变分模态分解(Variational Mode Decomposition,VMD)已被应用于机械故障诊断领域,惩罚因子对分解结果具有重要的影响,针对实际应用中使用单一惩罚因子分解多振源干扰的信号不能有效提取故障特征的问题,提出一种基于参数优化VMD的滚动轴承故障特征提取方法。根据峭度最大值原则确定分解层数K;通过鲸鱼算法优化选择各模态对应的惩罚因子,实现各模态对应最佳惩罚因子的自适应选择,获得信号的最优模态分解;根据峭度准则筛选分解后的模态分量并进行包络解调,提取轴承故障特征。仿真信号和工程数据的分析结果表明,相对于传统VMD、EEMD和快速谱峭度方法,该方法能够有效提升故障特征提取的敏感性,具有一定的工程应用价值。
Abstract
Aiming at the problem of only using a single penalty factor in traditional variational mode decomposition (VMD) being difficult to extract fault features of rolling bearing in practical application, a method forrolling bearing fault feature extraction based on parametric optimization VMD was proposed.Firstly, the number of decomposition layers K was determined according to the maximum kurtosis criterion.Secondly, the penalty factor corresponding to each mode was optimized with the whale algorithm to realize adaptive selection of each mode’s optimal penalty factor, and obtain a vibration signal’s the optimal mode decomposition.Finally, the kurtosis criterion was used to screen the decomposed modal components, perform envelope demodulation, and extract bearing fault features.The improved VMD was used to analyze simulated signals and engineering actual data.Results showed that compared with the traditional VMD, EEMD and the fast speed spectral kurtosis method, the proposed method can effectively improve the sensitivity of fault feature extraction; it is valuable in engineering applicationto a certain extent.
关键词
滚动轴承 /
变分模态分解 /
鲸鱼算法 /
特征提取
{{custom_keyword}} /
Key words
rolling bearing /
variational mode decomposition (VMD) /
whale algorithm /
feature extraction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Yan X , Jia M , Zhang W , et al. Fault diagnosis of rolling element bearing using a new optimal scale morphology analysis method[J]. Isa Transactions, 2018, 73(2):165-180.
[2] 程军圣, 于德介, 邓乾旺, et al. 时间-小波能量谱在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2004, 23(2): 34-37.
CHENG Junsheng, YU Dejie, DENG Qianwang, et al. Application of Time-Wavelet power spectrum to fault diagnosis of rolling bearings[J]. Journal of vibration and shock, 2004, 23(2) :34-37.
[3] Huang, Norden E., et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences454.1971 (1998): 903-995.
[4]郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013, 32(21):21-26.
ZHENG Jinde, CHENG Junsheng, YANG Yu. Modified EEMD algorithm and its applications[J]. Journal of vibration and shock, 2013, 32(21):21-26.
[5] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3):531-544.
[6] Mohanty S, Gupta K K, Raju K S. Comparative study between VMD and EMD in bearing fault diagnosis[C]//2014 9th International Conference on Industrial and Information Systems (ICIIS). IEEE, 2014: 1-6.
[7] 李华, 伍星, 刘韬, et al. 变分模态分解和改进的自适应共振技术在轴承故障特征提取中的应用[J]. 振动工程学报, 2018(4):718-726.
LI Hua, WU Xing, LIU Tao, et al. Application of variational mode decomposition and improved adaptive resonance technology in bearing fault feature extraction[J]. Journal of Vibration Engineering, 2018(4):718-726.
[8] 李华, 伍星, 刘韬, et al. 基于信息熵优化变分模态分解的滚动轴承故障特征提取[J]. 振动与冲击, 2018, 37(23):227-233..
LI Hua, WU Xing, LIU Tao, et al. Bearing fault feature extraction based on VMD optimized with information entropy[J]. Journal of vibration and shock, 2018, 37(23):227-233.
[9] Cai W, Yang Z, Wang Z, et al. A new compound fault feature extraction method based on multipoint kurtosis and variational mode decomposition[J]. Entropy, 2018, 20(7): 521-536.
[10] Yang K, Wang G, Dong Y, et al. Early chatter identification based on an optimized variational mode decomposition[J]. Mechanical Systems and Signal Processing, 2019, 115(1): 238-254.
[11] Yan X, Jia M. Application of CSA-VMD and optimal scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 122(3): 56-86.
[12] Zhang X , Miao Q , Zhang H , et al. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108(16):58-72.
[13] Miao Y, Zhao M, Lin J. Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition[J]. ISA transactions, 2019, 84(1): 82-95.
[14] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95(5): 51-67.
[15]Antoni, Jerome. "Fast computation of the kurtogram for the detection of transient faults." Mechanical Systems and Signal Processing ,2017,21(1): 108-124.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}