基于NSGA-II的钛合金纵扭超声铣削多目标参数优化

牛赢,焦锋,赵波,王晓博

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 241-249.

PDF(2408 KB)
PDF(2408 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 241-249.
论文

基于NSGA-II的钛合金纵扭超声铣削多目标参数优化

  • 牛赢,焦锋,赵波,王晓博
作者信息 +

Multi-objective parameter optimization for ultrasonic milling of titanium alloy in longitudinal and torsional directions based on NSGA-II

  • NIU Ying, JIAO Feng, ZHAO Bo, Wang Xiaobo
Author information +
文章历史 +

摘要

针对钛合金等航空难加工材料加工成本高、效率低、质量差等问题,提出了将纵扭超声振动复合到铣削加工中,采用带精英策略的快速非支配排序遗传算法(NSGA-II)对加工和超声参数进行多目标优化。基于正交试验,分别建立加工残余应力、表面粗糙度、表面硬度、刀具寿命预测模型,并对预测模型进行验证;在此基础上,为获取较大的残余压应力和较高的加工效率,建立多目标优化模型I;为获得较大的残余压应力和表面硬度,建立模型II;为获得较低表面粗糙度和较大的表面残余压应力,建立模型III;为获得较小的表面粗糙度和较高的加工效率,建立模型IV;为获得较低表面粗糙度和较高的刀具使用寿命,建立模型V;为获得较低的表面粗糙度和表面硬度,建立模型VI;通过试验对优化模型和结果进行验证,结果表明,所建立的优化模型能够以较高的精度为不同的工程应用场合提供多种参数优化方案。

Abstract

Aiming at problems of high cost, low efficiency and poor quality appearing in processing titanium alloy, etc.aeronautical materials, the longitudinal-torsional ultrasonic vibration was combined with milling, and the nondominated sorting genetic algorithm II (NSGA-II) was proposed to do multi-objective optimization for processing and ultrasonic parameters.Firstly, based on orthogonal tests, the prediction models for machining induced residual stress, surface roughness (SR), surface hardness (SH) and tool life were established and validated, respectively.Then, to get larger residual compressive stress (RCS) and higher processing efficiency, the multi-objective optimization model I was built.To get larger RCS and SH, the model II was built.To get lower SR and larger surface RCS, the model III was built.To get smaller SR and higher processing efficiency, the model IV was built.To get lower SR and higher tool life, the model V was built.To get lower SR and SH, the model VI was built.Finally,tests were conducted to verify these optimization models and their results.Results showed that the established optimization models based on NSGA-II can provide various parameter optimization schemes with higher accuracy for different engineering applications.

关键词

Ti-6Al-4V / 纵扭超声铣削 / 多目标优化 / NSGA-II / 试验验证

Key words

Ti-6Al-4V / ultrasonic milling in longitudinal and torsional directions / multi-objective optimization;NSGA-II;test verification

引用本文

导出引用
牛赢,焦锋,赵波,王晓博. 基于NSGA-II的钛合金纵扭超声铣削多目标参数优化[J]. 振动与冲击, 2020, 39(21): 241-249
NIU Ying, JIAO Feng, ZHAO Bo, Wang Xiaobo. Multi-objective parameter optimization for ultrasonic milling of titanium alloy in longitudinal and torsional directions based on NSGA-II[J]. Journal of Vibration and Shock, 2020, 39(21): 241-249

参考文献


 [1] 高国富,胡二娟,向道辉,等. 超声铣削C/C复合材料铣削力的理论建模[J]. 振动与冲击. 2018, 37(10): 8-13.
GAO Guofu, HU Erjuan, XIANG Daohui,et al. Theoretical modeling of the milling force of C/C composites in ultrasonic milling. Journal of Vibration and Shock, 2018,37(10):8-13.
[2] 付鹏,杨卫平,吴勇波. 超声振动辅助固结磨粒抛光硅片表面形貌及粗糙度研究[J]. 振动与冲击. 2018, 37(24): 237-243.
FU Peng, YANG Weiping,WU Yongbo. Investigation of silicon wafer surface morphology and roughness processed by fixed abrasive polishing with assistance of ultrasonic vibration[J]. Journal of Vibration and Shock, 2018,37(24):237-243.
[3] 焦锋,牛赢,赵波. 难加工材料铣削残余应力研究进展[J]. 表面技术. 2017(03): 267-273.
JIAO F, NIU Y,ZHAO B. Research Progress of Residual Stress in Milling of Difficult-to-machine Materials [J]. Surface Technology. 2017(03): 267-273
[4] Tong J, Feng Z, Jiao F, et al. Tool wear in longitudinal-torsional ultrasonic vibration milling of titanium alloys[J]. Surface Technology. 2019, 48(3): 297-303.
[5] Wang J, Zhang J, Feng P, et al. Feasibility Study of Longitudinal-Torsional-Coupled Rotary Ultrasonic Machining of Brittle Material[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2018, 140(5).
[6] Xiang D, Wu B, Yao Y, et al. Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites[J]. International Journal of Advanced Manufacturing Technology. 2019, 100(5-8): 1521-1530.
[7] Zheng J, Luo A. Experimental study on aluminum alloy 6061-T6 by ultrasonic deep rolling with longitudinal-torsional vibration[J]. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. 2015, 44(3): 733-737.
[8] Niu Y, Jiao F, Zhao B, et al. Investigation of cutting force in longitudinal- torsional ultrasonic-assisted milling of Ti-6Al-4V[J]. Materials. 2019, 12(12).
[9] 赵丹丹,焦锋. 基于灰色关联分析的35CrMoV钢活塞杆激光熔覆工艺参数优化[J]. 兵工学报. 2018, 39(10): 2073-2080.
ZHAO Dan-dan, JIAO Feng.Optimization of Laser Cladding Process Parameters of 35CrMoV Piston Rod Based on Grey Correlation Analysis. Acta Armamentarii, 2018, 39(10):2073-2080.
[10] Hitomi K. Optimization of multistable machining system: Analysis of optical machining conditions for the flow-type machining system[J]. International Journal of Production Research. 1971, 29(12): 23-28.
[11] Wang D J. Multiple-objective optimisation of machining operations based on neural networks[J]. International Journal of Advanced Manufacturing Technology. 1993, 8(4): 235-243.
[12] Liu C, Tang D, He H, et al. Prediction of surface roughness for end milling titanium alloy using modified particle swarm optimization LS-SVM[J]. Transactions of Nanjing University of Aeronautics and Astronautics. 2013, 30(1): 53-61.
[13] Mahdavinejad R A, Khani N, Fakhrabadi M M S. Optimization of milling parameters using artificial neural network and artificial immune system[J]. Journal of Mechanical Science & Technology. 2012, 26(12): 4097-4104.
[14] 徐涛. 航空用钛合金结构件精密铣削参数优化[D]. 哈尔滨工业大学, 2011.
XU Tao. Parameter optimization of precision Milling of aviatic titanium alloy Structure part [D].Harbin Institute of Technology, 2011.
[15] 迟玉伦,李郝林. 基于机床刀具加工变形研究的铣削工艺参数优化方法[J]. 振动与冲击. 2014, 33(20): 86-90.
CHI Yulun, LI Haolin. Milling parameters optimization method based on studying cutting tool deformation[J]. Journal of Vibration and Shock, 2014, 33(20): 86-90.
[16] Jiao F, Zhang M, Niu Y. Optimization of tungsten carbide processing parameters for laser heating and ultrasonic vibration composite assisted cutting[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019, 233(12): 4140-4153.
[17] 王维刚,刘占生. 多目标粒子群优化的支持向量机及其在齿轮故障诊断中的应用[J]. 振动工程学报. 2013, 26(05): 743-750.
WANG Wei-gang,LIU Zhan-sheng. Support vector machine optimized by multi-objective particle swarm and application in gear fault diagnosis[J]. Journal of Vibration Engineering,2013,26(05):743-750.
[18] 邓朝晖,符亚辉,万林林,等. 面向绿色高效制造的铣削工艺参数多目标优化[J]. 中国机械工程. 2017, 28(19): 2365-2372.
DENG Zhao-hui, FU Ya-hui, WAN Lin-lin, et al. Multi Objective Optimization of Milling Process Parameters for Green High-performance Manufacturing[J]. China Mechanical Engineering, 2017,28(19):2365-2372.
[19] 杨冰,蔡安江,陈亮. 整体叶轮车铣复合加工工艺多目标优化[J]. 机械设计与制造. 2015(05): 228-231.
YANG Bin, CAI Anjiang, CHEN Liang. Multi Objective Optimization of the Turn Milling Processing of Integral Impeller[J]. Machinery Design & Manufacture, 2015(05): 228-231.
[20] Wang Z G, Wong Y S, Rahman M, et al. Multi-objective optimization of high-speed milling with parallel genetic simulated annealing[J]. International Journal of Advanced Manufacturing Technology. 2006, 31(3-4): 209-218.
[21] Naresh N, Jenarthanan M P, Hari Prakash R. Multi-objective optimisation of CNC milling process using Grey-Taguchi method in machining of GFRP composites[J]. Multidiscipline Modeling in Materials and Structures. 2014, 10(2): 265-275.
[22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(2): 182-197.
[23] Li J, Yang X, Ren C, et al. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II[J]. International Journal of Advanced Manufacturing Technology. 2015, 76(5-8): 941-953.
[24] Chakraborti N, Kumar B S, Babu V S, et al. Optimizing surface profiles during hot rolling: A genetic algorithms based multi-objective optimization[J]. Computational Materials Science. 2006, 37(1–2): 159-165.
[25] Koura O M, El-Akkad A S. Optimization of Cutting Conditions Using Regression and Genetic Algorithm in End Milling[J]. International Journal of Engineering Research in Africa. 2015, 20: 12-18.
[26] Gholami M H, Azizi M R. Constrained grinding optimization for time, cost, and surface roughness using NSGA-II[J]. International Journal of Advanced Manufacturing Technology. 2014, 73(5-8): 981-988.
[27] Niu Y, Jiao F, Zhao B, et al. Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology. 2017, 93(9-12): 4345-4356.
 
 

PDF(2408 KB)

Accesses

Citation

Detail

段落导航
相关文章

/