[1] 高国富,胡二娟,向道辉,等. 超声铣削C/C复合材料铣削力的理论建模[J]. 振动与冲击. 2018, 37(10): 8-13.
GAO Guofu, HU Erjuan, XIANG Daohui,et al. Theoretical modeling of the milling force of C/C composites in ultrasonic milling. Journal of Vibration and Shock, 2018,37(10):8-13.
[2] 付鹏,杨卫平,吴勇波. 超声振动辅助固结磨粒抛光硅片表面形貌及粗糙度研究[J]. 振动与冲击. 2018, 37(24): 237-243.
FU Peng, YANG Weiping,WU Yongbo. Investigation of silicon wafer surface morphology and roughness processed by fixed abrasive polishing with assistance of ultrasonic vibration[J]. Journal of Vibration and Shock, 2018,37(24):237-243.
[3] 焦锋,牛赢,赵波. 难加工材料铣削残余应力研究进展[J]. 表面技术. 2017(03): 267-273.
JIAO F, NIU Y,ZHAO B. Research Progress of Residual Stress in Milling of Difficult-to-machine Materials [J]. Surface Technology. 2017(03): 267-273
[4] Tong J, Feng Z, Jiao F, et al. Tool wear in longitudinal-torsional ultrasonic vibration milling of titanium alloys[J]. Surface Technology. 2019, 48(3): 297-303.
[5] Wang J, Zhang J, Feng P, et al. Feasibility Study of Longitudinal-Torsional-Coupled Rotary Ultrasonic Machining of Brittle Material[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2018, 140(5).
[6] Xiang D, Wu B, Yao Y, et al. Ultrasonic longitudinal-torsional vibration-assisted cutting of Nomex® honeycomb-core composites[J]. International Journal of Advanced Manufacturing Technology. 2019, 100(5-8): 1521-1530.
[7] Zheng J, Luo A. Experimental study on aluminum alloy 6061-T6 by ultrasonic deep rolling with longitudinal-torsional vibration[J]. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering. 2015, 44(3): 733-737.
[8] Niu Y, Jiao F, Zhao B, et al. Investigation of cutting force in longitudinal- torsional ultrasonic-assisted milling of Ti-6Al-4V[J]. Materials. 2019, 12(12).
[9] 赵丹丹,焦锋. 基于灰色关联分析的35CrMoV钢活塞杆激光熔覆工艺参数优化[J]. 兵工学报. 2018, 39(10): 2073-2080.
ZHAO Dan-dan, JIAO Feng.Optimization of Laser Cladding Process Parameters of 35CrMoV Piston Rod Based on Grey Correlation Analysis. Acta Armamentarii, 2018, 39(10):2073-2080.
[10] Hitomi K. Optimization of multistable machining system: Analysis of optical machining conditions for the flow-type machining system[J]. International Journal of Production Research. 1971, 29(12): 23-28.
[11] Wang D J. Multiple-objective optimisation of machining operations based on neural networks[J]. International Journal of Advanced Manufacturing Technology. 1993, 8(4): 235-243.
[12] Liu C, Tang D, He H, et al. Prediction of surface roughness for end milling titanium alloy using modified particle swarm optimization LS-SVM[J]. Transactions of Nanjing University of Aeronautics and Astronautics. 2013, 30(1): 53-61.
[13] Mahdavinejad R A, Khani N, Fakhrabadi M M S. Optimization of milling parameters using artificial neural network and artificial immune system[J]. Journal of Mechanical Science & Technology. 2012, 26(12): 4097-4104.
[14] 徐涛. 航空用钛合金结构件精密铣削参数优化[D]. 哈尔滨工业大学, 2011.
XU Tao. Parameter optimization of precision Milling of aviatic titanium alloy Structure part [D].Harbin Institute of Technology, 2011.
[15] 迟玉伦,李郝林. 基于机床刀具加工变形研究的铣削工艺参数优化方法[J]. 振动与冲击. 2014, 33(20): 86-90.
CHI Yulun, LI Haolin. Milling parameters optimization method based on studying cutting tool deformation[J]. Journal of Vibration and Shock, 2014, 33(20): 86-90.
[16] Jiao F, Zhang M, Niu Y. Optimization of tungsten carbide processing parameters for laser heating and ultrasonic vibration composite assisted cutting[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019, 233(12): 4140-4153.
[17] 王维刚,刘占生. 多目标粒子群优化的支持向量机及其在齿轮故障诊断中的应用[J]. 振动工程学报. 2013, 26(05): 743-750.
WANG Wei-gang,LIU Zhan-sheng. Support vector machine optimized by multi-objective particle swarm and application in gear fault diagnosis[J]. Journal of Vibration Engineering,2013,26(05):743-750.
[18] 邓朝晖,符亚辉,万林林,等. 面向绿色高效制造的铣削工艺参数多目标优化[J]. 中国机械工程. 2017, 28(19): 2365-2372.
DENG Zhao-hui, FU Ya-hui, WAN Lin-lin, et al. Multi Objective Optimization of Milling Process Parameters for Green High-performance Manufacturing[J]. China Mechanical Engineering, 2017,28(19):2365-2372.
[19] 杨冰,蔡安江,陈亮. 整体叶轮车铣复合加工工艺多目标优化[J]. 机械设计与制造. 2015(05): 228-231.
YANG Bin, CAI Anjiang, CHEN Liang. Multi Objective Optimization of the Turn Milling Processing of Integral Impeller[J]. Machinery Design & Manufacture, 2015(05): 228-231.
[20] Wang Z G, Wong Y S, Rahman M, et al. Multi-objective optimization of high-speed milling with parallel genetic simulated annealing[J]. International Journal of Advanced Manufacturing Technology. 2006, 31(3-4): 209-218.
[21] Naresh N, Jenarthanan M P, Hari Prakash R. Multi-objective optimisation of CNC milling process using Grey-Taguchi method in machining of GFRP composites[J]. Multidiscipline Modeling in Materials and Structures. 2014, 10(2): 265-275.
[22] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation. 2002, 6(2): 182-197.
[23] Li J, Yang X, Ren C, et al. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II[J]. International Journal of Advanced Manufacturing Technology. 2015, 76(5-8): 941-953.
[24] Chakraborti N, Kumar B S, Babu V S, et al. Optimizing surface profiles during hot rolling: A genetic algorithms based multi-objective optimization[J]. Computational Materials Science. 2006, 37(1–2): 159-165.
[25] Koura O M, El-Akkad A S. Optimization of Cutting Conditions Using Regression and Genetic Algorithm in End Milling[J]. International Journal of Engineering Research in Africa. 2015, 20: 12-18.
[26] Gholami M H, Azizi M R. Constrained grinding optimization for time, cost, and surface roughness using NSGA-II[J]. International Journal of Advanced Manufacturing Technology. 2014, 73(5-8): 981-988.
[27] Niu Y, Jiao F, Zhao B, et al. Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology. 2017, 93(9-12): 4345-4356.