基于线调频小波积分的时变系统物理参数识别

张杰,史治宇,赵宗爽

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 267-273.

PDF(2304 KB)
PDF(2304 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 267-273.
论文

基于线调频小波积分的时变系统物理参数识别

  • 张杰,史治宇,赵宗爽
作者信息 +

Physical parametric identification of time-varying system based onchirp wavelet integration

  • ZHANG Jie,   SHI Zhiyu,   ZHAO Zongshuang
Author information +
文章历史 +

摘要

基于短时线性变化假设推导了线调频小波积分计算方法。借助此方法仅利用时变结构的加速度响应信号,就可重构出速度响应和位移响应信号,并在质量参数已知的情况下构造最小二乘算法识别结构的时变刚度和时变阻尼。由于引入了调频斜率参数刻画信号的短时调频特征,该方法相比传统识别方法能更好地追踪快速时变参数且计算效率大大提高。仿真算例中,构造了一个3自由度时变结构模型,针对各种时变情况进行物理参数的识别,验证了方法的正确性、适用性和抗噪声能力。

Abstract

A method of chirp wavelet integration was derived based on the short-time linear change assumption.Applying this method, velocity and displacement response signals of a time-varying structure were reconstructed only with its acceleration response signal.Then, time-varying stiffness and damping of the structure were identified by constructing a least squares algorithm when the structure’s mass parameters were known in advance.It was shown that due to introducing frequency modulation slope parameter to characterize the short-term frequency modulation characteristics of a signal, compared with the traditional identification method, this method can better track fast time-varying parameters and greatly improve computational efficiency.In a simulation example, a 3-DOF time-varying structure model was constructed, and its physical parameters were identified under various time-varying conditions to verify the correctness, applicability and anti-noise ability of the proposed method.

关键词

时变系统 / 参数识别 / 线调频小波积分 / 加速度响应 / 信号重构

Key words

time-varying system / parametric identification / chirp wavelet integration / acceleration response / signal reconstruction

引用本文

导出引用
张杰,史治宇,赵宗爽. 基于线调频小波积分的时变系统物理参数识别[J]. 振动与冲击, 2020, 39(21): 267-273
ZHANG Jie, SHI Zhiyu, ZHAO Zongshuang. Physical parametric identification of time-varying system based onchirp wavelet integration[J]. Journal of Vibration and Shock, 2020, 39(21): 267-273

参考文献

[1] 周传荣, 赵淳生. 机械振动参数识别及其应用[M]. 北京:科学出版社, 1989.
[2] 于开平, 庞世伟, 赵婕. 时变线性/非线性结构参数识别及系统辨识方法研究进展[J]. 科学通报, 2009, 54(20): 3147-3156.
Yu Kaiping, Pang Shiwei, Zhao Jie. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Sci Bull (Chinese Ver), 2009, 54(20): 3147-3156.
[3] Bao C X, Hao H, et al. Time-varying system identification using a newly improved HHT algorithm[J]. Computers and Structures, 2009, 87:1611-1623.
[4] 程军圣, 张亢, 杨宇, 于德介. 局部均值分解与经验模式分解的对比研究[J]. 振动与冲击, 2009, 28(5):13-16.
Cheng Junsheng, Zhang Kang, Yang Yu, Yu Dejie. Comparison between the methods of local mean decomposition and empirical mode decomposition[J]. Journal of Vibration and Shock, 2009, 28(5):13-16.
[5] Shi Z Y, Law S S, Xu X. Identification of linear time-varying MDOF dynamic systems from forced excitation using Hilbert transform and EMD method[J]. Journal of Sound and Vibration, 2009, 321(3-5): 572-589.
[6] Liu K. Identification of linear time-varying systems[J]. Journal of Sound and Vibration, 1997, 204: 487-500.
[7] 庞世伟, 于开平, 邹经湘. 用于时变系统辨识的自由响应递推子空间方法[J]. 振动工程学报, 2005, 18(2):233-237. PANG Shiwei, Yu Kaiping, Zou Jingxiang. Time-varying system identification using recursive subspace method based on free response data[J]. Journal of Vibration Engineering, 2005, 18(2):233-237.
[8] Zhou H T, Yu K P, Chen Y S, et al. Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method[J]. Shock and Vibration, 2018, 2018:1-12., “Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method,” Shock and Vibration, vol. 2018, no. 2, pp. 1-12, 2018.
[9] Shi Z Y, Law S S, Li H N. Subspace-Based identification of time-varying system[J]. Journal of AIAA, 2007, 45(8): 2042-2050.
[10] 续秀忠, 华宏星, 张志谊, 陈兆能. 应用时频表示进行结构时变模态参数辨识[J]. 振动与冲击, 2002, 21(2): 36-40.
Xu Xiuzhong, Hua Hongxing, Zhang Zhiyi, Chen Zhaoneng. Time-varying modal frequency identification by using time-frequency representation[J]. Journal of Vibration and Shock, 2002, 21(2): 36-40.
[11] Dziedziech K, Staszewski W J, Basu B, et al. Wavelet-based detection of abrupt changes in natural frequencies of time-variant systems[J]. Mechanical Systems and Signal Processing, 2015, 64-65:347-359.
[12] Xin Y, Hao H, Li J. Time-varying system identification by enhanced Empirical Wavelet Transform based on Synchroextracting Transform[J]. Engineering Structures, 2019, 196(1), Article ID 109313.
[13] Hera A, Shinde A, Hou Z K. Issues in tracking instantaneous modal parameters for structural health monitoring using wavelet approach[C]. In: Proc 23rdinternational modal analysis conference (IMAC XXIII), Orlando, Florida, USA, 2005: 338-347.
[14] Xu X, Shi Z Y, You Q. Identification of linear time-varying systems using a wavelet-based state-space method[J]. Mechanical Systems and Signal Processing, 2012, 26: 91-103.
[15] Liu L , Liu H , Wu Z , et al. Modal Parameter Identification of Time-Varying Systems Using the Time-Varying Multivariate Autoregressive Model[C]. Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, 2005.
[16] Zhou S D , Ma Y C , Liu L , et al. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine[J]. Mechanical Systems and Signal Processing, 2018, 98:722-755.
[17] 王宏禹, 邱天爽. 非平稳确定性信号与非平稳随机信号统一分类法的探讨[J]. 通信学报, 2015, 36(328):5-14.
 Wang Hongyu, Qiu Tianshuang. Unified classification methods for determinate nonstationary signals and random nonstationary signals[J]. Journal of Vibration and Shock, 2003, 22(2):66-68.
[18] Deng Y, Cheng C M, Yang Y, et al. Parametric identification of nonlinear vibration systems via polynomial chirplet transform[J]. Journal of Vibration and Acoustics, 2016, 138(5):051014-1-18.
[19] Yu G, Zhou Y. General linear chirplet transform[J]. Mechanical Systems and Signal Processing, 2015, 70:958-973.
[20] 于开平, 邹经湘, 杨炳渊. 小波函数的性质及其应用研究[J]. 哈尔滨工业大学学报, 2000, 32(2):36-39.
Yu Kaiping, Zou Jingxiang, Yang Bingyuan. Study on performance and application of the wavelet function[J]. Journal of Harbin Institute of Technology, 2009, 54(20): 3147-3156.
[21] 彭富强, 于德介, 刘坚. 一种基于多尺度线调频基的稀疏信号分解方法[J]. 振动工程学报, 2010, 23(3):333-338.
Peng Fuqiang, Yu Dejie, Liu Jian. Sparse signal decomposition method based on multi-scale chirplet[J]. Journal of Vibration Engineering, 2010, 23(3):333-338.

PDF(2304 KB)

322

Accesses

0

Citation

Detail

段落导航
相关文章

/