[1] 周传荣, 赵淳生. 机械振动参数识别及其应用[M]. 北京:科学出版社, 1989.
[2] 于开平, 庞世伟, 赵婕. 时变线性/非线性结构参数识别及系统辨识方法研究进展[J]. 科学通报, 2009, 54(20): 3147-3156.
Yu Kaiping, Pang Shiwei, Zhao Jie. Advances in method of time-varying linear/nonlinear structural system identification and parameter estimate[J]. Chinese Sci Bull (Chinese Ver), 2009, 54(20): 3147-3156.
[3] Bao C X, Hao H, et al. Time-varying system identification using a newly improved HHT algorithm[J]. Computers and Structures, 2009, 87:1611-1623.
[4] 程军圣, 张亢, 杨宇, 于德介. 局部均值分解与经验模式分解的对比研究[J]. 振动与冲击, 2009, 28(5):13-16.
Cheng Junsheng, Zhang Kang, Yang Yu, Yu Dejie. Comparison between the methods of local mean decomposition and empirical mode decomposition[J]. Journal of Vibration and Shock, 2009, 28(5):13-16.
[5] Shi Z Y, Law S S, Xu X. Identification of linear time-varying MDOF dynamic systems from forced excitation using Hilbert transform and EMD method[J]. Journal of Sound and Vibration, 2009, 321(3-5): 572-589.
[6] Liu K. Identification of linear time-varying systems[J]. Journal of Sound and Vibration, 1997, 204: 487-500.
[7] 庞世伟, 于开平, 邹经湘. 用于时变系统辨识的自由响应递推子空间方法[J]. 振动工程学报, 2005, 18(2):233-237. PANG Shiwei, Yu Kaiping, Zou Jingxiang. Time-varying system identification using recursive subspace method based on free response data[J]. Journal of Vibration Engineering, 2005, 18(2):233-237.
[8] Zhou H T, Yu K P, Chen Y S, et al. Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method[J]. Shock and Vibration, 2018, 2018:1-12., “Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method,” Shock and Vibration, vol. 2018, no. 2, pp. 1-12, 2018.
[9] Shi Z Y, Law S S, Li H N. Subspace-Based identification of time-varying system[J]. Journal of AIAA, 2007, 45(8): 2042-2050.
[10] 续秀忠, 华宏星, 张志谊, 陈兆能. 应用时频表示进行结构时变模态参数辨识[J]. 振动与冲击, 2002, 21(2): 36-40.
Xu Xiuzhong, Hua Hongxing, Zhang Zhiyi, Chen Zhaoneng. Time-varying modal frequency identification by using time-frequency representation[J]. Journal of Vibration and Shock, 2002, 21(2): 36-40.
[11] Dziedziech K, Staszewski W J, Basu B, et al. Wavelet-based detection of abrupt changes in natural frequencies of time-variant systems[J]. Mechanical Systems and Signal Processing, 2015, 64-65:347-359.
[12] Xin Y, Hao H, Li J. Time-varying system identification by enhanced Empirical Wavelet Transform based on Synchroextracting Transform[J]. Engineering Structures, 2019, 196(1), Article ID 109313.
[13] Hera A, Shinde A, Hou Z K. Issues in tracking instantaneous modal parameters for structural health monitoring using wavelet approach[C]. In: Proc 23rdinternational modal analysis conference (IMAC XXIII), Orlando, Florida, USA, 2005: 338-347.
[14] Xu X, Shi Z Y, You Q. Identification of linear time-varying systems using a wavelet-based state-space method[J]. Mechanical Systems and Signal Processing, 2012, 26: 91-103.
[15] Liu L , Liu H , Wu Z , et al. Modal Parameter Identification of Time-Varying Systems Using the Time-Varying Multivariate Autoregressive Model[C]. Asme International Design Engineering Technical Conferences & Computers & Information in Engineering Conference, 2005.
[16] Zhou S D , Ma Y C , Liu L , et al. Output-only modal parameter estimator of linear time-varying structural systems based on vector TAR model and least squares support vector machine[J]. Mechanical Systems and Signal Processing, 2018, 98:722-755.
[17] 王宏禹, 邱天爽. 非平稳确定性信号与非平稳随机信号统一分类法的探讨[J]. 通信学报, 2015, 36(328):5-14.
Wang Hongyu, Qiu Tianshuang. Unified classification methods for determinate nonstationary signals and random nonstationary signals[J]. Journal of Vibration and Shock, 2003, 22(2):66-68.
[18] Deng Y, Cheng C M, Yang Y, et al. Parametric identification of nonlinear vibration systems via polynomial chirplet transform[J]. Journal of Vibration and Acoustics, 2016, 138(5):051014-1-18.
[19] Yu G, Zhou Y. General linear chirplet transform[J]. Mechanical Systems and Signal Processing, 2015, 70:958-973.
[20] 于开平, 邹经湘, 杨炳渊. 小波函数的性质及其应用研究[J]. 哈尔滨工业大学学报, 2000, 32(2):36-39.
Yu Kaiping, Zou Jingxiang, Yang Bingyuan. Study on performance and application of the wavelet function[J]. Journal of Harbin Institute of Technology, 2009, 54(20): 3147-3156.
[21] 彭富强, 于德介, 刘坚. 一种基于多尺度线调频基的稀疏信号分解方法[J]. 振动工程学报, 2010, 23(3):333-338.
Peng Fuqiang, Yu Dejie, Liu Jian. Sparse signal decomposition method based on multi-scale chirplet[J]. Journal of Vibration Engineering, 2010, 23(3):333-338.