浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究

郑孟添1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 34-41.

PDF(3340 KB)
PDF(3340 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 34-41.
论文

浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究

  • 郑孟添1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2
作者信息 +

Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation

  • ZHENG Mengtian1,2, YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2
Author information +
文章历史 +

摘要

基于Randolph-Quiggin非线性管土作用模型,借助ABAQUS Subroutine功能中的User Defined Element(UEL)拓展模块创建钢悬链线立管触地单元,研究了顶端垂荡激励下立管触地段动力响应特性。通过与模型试验结果比较分析,验证了开发的数值分析模型的合理性,并讨论了其相较传统线性管土作用模型体现出的优势。开展参数敏感性分析,深入探讨了立管顶端垂荡幅值及周期对沟槽形状、立管位移及弯矩响应等的影响效应。

Abstract

Based on Randolph-Quiggin nonlinear riser-soil interaction model, dynamic response characteristics of a steel catenary riser (SCR) touchdown section under its top floating bodies’ heave excitation were studied.Touchdown elements of the SCR were developed by using the user defined element extension module (UEL) in subroutine function of ABAQUS.The rationality and effectiveness of the developed numerical model were verified and its advantages over those of the traditional linear model were discussed by comparing to model test results.The effects of amplitude and frequency of top heave excitation on seabed trench shape, riser displacement and bending moment response were deeply explored with parametric sensitivity analysis.

关键词

钢悬链线立管 / 非线性管土作用 / 沟槽发展 / 参数敏感性 / 动力响应

Key words

steel catenary riser / nonlinear riser-soil interaction / trench development / parametric sensitivity / dynamic response

引用本文

导出引用
郑孟添1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2. 浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究[J]. 振动与冲击, 2020, 39(21): 34-41
ZHENG Mengtian1,2, YUAN Yuchao1,2, XUE Hongxiang1,2, TANG Wenyong1,2. Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation[J]. Journal of Vibration and Shock, 2020, 39(21): 34-41

参考文献

[1] 孟庆飞, 黄维平, 刘建军. 深水钢悬链式立管与浮式平台整体分析方法研究[J]. 振动与冲击, 2013, 32(17): 19-23.
MENG Qingfei, HUANG Weiping, Liu Jianjun. Integrated analysis of deepwater SCR and floating platform [J]. Journal of Vibration and Shock, 2013, 32(17): 19-23.
[2] 孟丹. 钢悬链线输流立管顶部浮体激励非线性响应研究[J]. 振动与冲击, 2013, 32(4): 96-101.
MENG Dan. Nonlinear Dynamic Responses of Fluid-conveying Steelcatenary Riser Subjected to Top Excitation. Journal of Vibration and Shock, 2013, 32(4): 96-101.
[3] 王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(04): 585-589+596.
WANG Kunpeng, XUE Hongxiang, TANG Wenyong. Dynamic Response Analysis of Deepwater Steel Catenary Riser Based on the Seabed-Suction and Stiffness-Degradation Model [J]. Journal of Shanghai Jiaotong University, 2011, 45(04): 585-589+596.
[4] Aubeny C P, Biscontin G. Seafloor-riser interaction model [J]. International Journal of Geomechanics, 2009, 9(3): 133-141.
[5] Randolph M, Quiggin P. Non-linear hysteretic seabed model for catenary pipeline contact [C] // Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honoluu, Hawaii: ASME, 2009: 145-154.
[6] 白兴兰, 黄维平, 谢永和, 等. 基于非线性海床刚度模型的钢悬链线立管动力响应分析[J]. 振动与冲击, 2015, 34(21): 82-88.
BAI Xinglan, HUANG Weiping, XIE Yonghe, et al. Dynamic Response Analysis of Steel Catenary Riser Based on the Nonlinear Seabed Stiffness Model. Journal of Vibration and Shock, 2015, 34(21): 82-88.
[7] 周阳, 杨超凡, 黄维平. 海床土刚度非线性的钢悬链式立管响应分析[J]. 哈尔滨工程大学学报, 2017, 38(03): 356-362.
ZHOU yang, YANG Chaofan, HUANG Weiping. Dynamic response analysis of steel catenary riser based on nonlinear stiffness of seabed [J]. Journal of Harbin Engineering University, 2017, 38(03): 356-362.
[8] 陈振新, 李捍平, 李世强, 等. 考虑非线性管-土接触模型的钢悬链线立管触地区动态曲率分析[J]. 海洋工程, 2018, 36(06): 77-83.
CHEN Zhenxin, LI Hanping, LI Shiqiang, et al. Dynamic curvature in catenary risers at the touch down zone considering nonlinear riser-soil interaction [J]. The Ocean Engineering, 2018, 36(06): 77-83.
[9] 常爽, 黄维平, 杨超凡. 非线性管土作用下钢悬链式立管动力响应分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(05): 111-118.
CHANG Shuang, HUANG Weiping, YANG Chao-fan. The influence of nonlinear riser-soil interaction on the dynamic response of steel catenary riser [J]. Periodical of Ocean University of China, 2018, 48(05): 111-118.
[10] Xinglan Bai, Weiping Huang, Murilo Augusto Vaz, et al. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser [J]. Marine Structures, 2015, 41.
[11] Rasoul H, Mehrdad K. Equivalent linear soil stiffness in fatigue design of steel catenary risers [J]. Ocean Engineering, 2016, 111.
[12] Hodjat S. Response of steel catenary risers on hysteretic non-linear seabed [J]. Applied Ocean Research, 2014, 44.
[13] Muraleedharan, A, Kimiae M. Comparing Results of Time Domain Fatigue Design of Steel Catenary Risers Using Linear and Nonlinear Riser Soil Interaction Models Under Random Waves [C] // Offshore Technology Conference, Kuala Lumpur, Malaysia, Paper OTC-28571-MS.
[14] Xiaoyu Dong, Hodjat Shiri. Performance of non-linear seabed interaction models for steel catenary risers, part II: global response [J]. Applied Ocean Research, 2019, 82.
[15] Lizhong Wang, Ju Zhang, Feng Yuan, et al. Interaction between catenary riser and soft seabed: Large-scale indoor tests [J]. Applied Ocean Research, 2014, 45. 


PDF(3340 KB)

345

Accesses

0

Citation

Detail

段落导航
相关文章

/