
浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究
郑孟添1,2,袁昱超1,2,薛鸿祥1,2,唐文勇1,2
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 34-41.
浮体垂荡激励下深海悬链线立管触地端动力响应及沟槽发展研究
Dynamic response and trench development of deep-sea steel catenary riser touchdown section under floating bodies’ heave excitation
钢悬链线立管 / 非线性管土作用 / 沟槽发展 / 参数敏感性 / 动力响应 {{custom_keyword}} /
steel catenary riser / nonlinear riser-soil interaction / trench development / parametric sensitivity / dynamic response {{custom_keyword}} /
[1] 孟庆飞, 黄维平, 刘建军. 深水钢悬链式立管与浮式平台整体分析方法研究[J]. 振动与冲击, 2013, 32(17): 19-23.
MENG Qingfei, HUANG Weiping, Liu Jianjun. Integrated analysis of deepwater SCR and floating platform [J]. Journal of Vibration and Shock, 2013, 32(17): 19-23.
[2] 孟丹. 钢悬链线输流立管顶部浮体激励非线性响应研究[J]. 振动与冲击, 2013, 32(4): 96-101.
MENG Dan. Nonlinear Dynamic Responses of Fluid-conveying Steelcatenary Riser Subjected to Top Excitation. Journal of Vibration and Shock, 2013, 32(4): 96-101.
[3] 王坤鹏, 薛鸿祥, 唐文勇. 基于海床吸力和刚度衰减模型的深海钢悬链线立管动力响应分析[J]. 上海交通大学学报, 2011, 45(04): 585-589+596.
WANG Kunpeng, XUE Hongxiang, TANG Wenyong. Dynamic Response Analysis of Deepwater Steel Catenary Riser Based on the Seabed-Suction and Stiffness-Degradation Model [J]. Journal of Shanghai Jiaotong University, 2011, 45(04): 585-589+596.
[4] Aubeny C P, Biscontin G. Seafloor-riser interaction model [J]. International Journal of Geomechanics, 2009, 9(3): 133-141.
[5] Randolph M, Quiggin P. Non-linear hysteretic seabed model for catenary pipeline contact [C] // Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honoluu, Hawaii: ASME, 2009: 145-154.
[6] 白兴兰, 黄维平, 谢永和, 等. 基于非线性海床刚度模型的钢悬链线立管动力响应分析[J]. 振动与冲击, 2015, 34(21): 82-88.
BAI Xinglan, HUANG Weiping, XIE Yonghe, et al. Dynamic Response Analysis of Steel Catenary Riser Based on the Nonlinear Seabed Stiffness Model. Journal of Vibration and Shock, 2015, 34(21): 82-88.
[7] 周阳, 杨超凡, 黄维平. 海床土刚度非线性的钢悬链式立管响应分析[J]. 哈尔滨工程大学学报, 2017, 38(03): 356-362.
ZHOU yang, YANG Chaofan, HUANG Weiping. Dynamic response analysis of steel catenary riser based on nonlinear stiffness of seabed [J]. Journal of Harbin Engineering University, 2017, 38(03): 356-362.
[8] 陈振新, 李捍平, 李世强, 等. 考虑非线性管-土接触模型的钢悬链线立管触地区动态曲率分析[J]. 海洋工程, 2018, 36(06): 77-83.
CHEN Zhenxin, LI Hanping, LI Shiqiang, et al. Dynamic curvature in catenary risers at the touch down zone considering nonlinear riser-soil interaction [J]. The Ocean Engineering, 2018, 36(06): 77-83.
[9] 常爽, 黄维平, 杨超凡. 非线性管土作用下钢悬链式立管动力响应分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(05): 111-118.
CHANG Shuang, HUANG Weiping, YANG Chao-fan. The influence of nonlinear riser-soil interaction on the dynamic response of steel catenary riser [J]. Periodical of Ocean University of China, 2018, 48(05): 111-118.
[10] Xinglan Bai, Weiping Huang, Murilo Augusto Vaz, et al. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser [J]. Marine Structures, 2015, 41.
[11] Rasoul H, Mehrdad K. Equivalent linear soil stiffness in fatigue design of steel catenary risers [J]. Ocean Engineering, 2016, 111.
[12] Hodjat S. Response of steel catenary risers on hysteretic non-linear seabed [J]. Applied Ocean Research, 2014, 44.
[13] Muraleedharan, A, Kimiae M. Comparing Results of Time Domain Fatigue Design of Steel Catenary Risers Using Linear and Nonlinear Riser Soil Interaction Models Under Random Waves [C] // Offshore Technology Conference, Kuala Lumpur, Malaysia, Paper OTC-28571-MS.
[14] Xiaoyu Dong, Hodjat Shiri. Performance of non-linear seabed interaction models for steel catenary risers, part II: global response [J]. Applied Ocean Research, 2019, 82.
[15] Lizhong Wang, Ju Zhang, Feng Yuan, et al. Interaction between catenary riser and soft seabed: Large-scale indoor tests [J]. Applied Ocean Research, 2014, 45.
/
〈 |
|
〉 |