自然超空泡航行体回转运动数值研究

王瑞1,刘传龙2,赵三飞2,祁晓斌1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 65-70.

PDF(2080 KB)
PDF(2080 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 65-70.
论文

自然超空泡航行体回转运动数值研究

  • 王瑞1,刘传龙2,赵三飞2,祁晓斌1
作者信息 +

Numerical simulation for rotating motion of a natural super-cavitating vehicle

  • WANG Rui1, LIU Chuanlong2, ZHAO Sanfei2, QI Xiaobin1
Author information +
文章历史 +

摘要

针对超空泡航行体领域亟待明确的航行体机动过程中空泡形态和流体动力特性开展数值模拟研究。基于Logvinovich独立扩张原理建立了离心力作用下的回转运动理论模型和用于求解超空泡航行体回转运动的三维数值计算模型,通过两种计算模型下获得的计算结果进行对比,验证了数值模拟方法的有效性。利用数值模拟方法研究了离心力“拉直”作用对空泡内航行体流体动力特性的影响规律,分析了不同回转角速度下航行体表面压力分布特性。结果表明:随着回转角速度增加,空泡轴线的外移量增大,离心力拉直空泡作用越强烈,将会对回转半径内外两侧空泡的发展的产生较大影响;升力系数和力矩系数呈现“正弦”形态分布,当回转角速度小于1 rad/s时,产生的俯仰力矩对航行体起到“抬头”作用,反之,则产生的俯仰力矩对航行体起到“低头”作用。

Abstract

Here, numerical simulation was performed for cavitation shape and hydrodynamic characteristics of a natural super-cavitating vehicle in its maneuver process.Based on Logvinovich’s principle of independent expansion, the theoretical model of its rotating motion under action of centrifugal force and the 3-D numerical calculation model for solving rotating motion of the super-cavitating vehicle were established.By comparing calculation results of these two models, the effectiveness of the numerical simulation method was verified.The numerical simulation method was used to study influence laws of centrifugal force’s “straightening” action on hydrodynamic characteristics of the vehicle in cavitation, and analyze pressure distribution characteristics on the surface of the vehicle at different rotating angular velocities.Results showed that with increase in rotating angular velocity, cavitation axis’s external displacement increases, the centrifugal force’s straightening cavitation action becomes stronger to have greater influence on development of cavitation on both sides of the vehicle’s rotation radius; lift coefficient and moment coefficient present a sinusoidal distribution; when rotating angular velocity is less than 1 rad /s, the generated pitching moment has a “head up” effect on the vehicle; when rotating angular velocity is larger than 1 rad /s, the generated pitching moment has a "head down" effect on the vehicle.

关键词

回转运动 / 离心力 / 泡内压力 / 数值模拟

Key words

rotating motion / centrifugal force / cavitation internal pressure / numerical simulation

引用本文

导出引用
王瑞1,刘传龙2,赵三飞2,祁晓斌1. 自然超空泡航行体回转运动数值研究[J]. 振动与冲击, 2020, 39(21): 65-70
WANG Rui1, LIU Chuanlong2, ZHAO Sanfei2, QI Xiaobin1. Numerical simulation for rotating motion of a natural super-cavitating vehicle[J]. Journal of Vibration and Shock, 2020, 39(21): 65-70

参考文献

[1] Ashley S.Warp drive underwate[J].Scientific American, 2001, 284(5):70-79.
[2] SAVCHENKO Y N. Experimental investigation of supercavitating motion of bodies[R]. Brussels: VKI Special Course on Supercavitating Flows, 2001.
[3] 曹伟,魏英杰,王聪,等. 超空泡技术现状、问题与应用[J]. 力学进展, 2006, 36(4):571-579.
 CAO Wei, WEI Ying-jie, WANG Cong, et al. Current status, problems and applications of supercavitation technology[J]. Advances in Mechanics, 2006, 36(4):571-579.
[4] 杨莉,张庆明. 超空泡技术的应用现状和发展趋势[J]. 战术导弹技术, 2006, 5:6-10.
 YANG Li, ZHANG Qing-ming. Current application and perspectives on Supercavitation Technology Research[J]. Tactical Missile Technology, 2006, 5:6-10.
[5] 肖昌美,李恒,彭佩. 国外水面舰艇鱼雷防御系统发展现状及趋势[J]. 鱼雷技术, 2014, 22(2):150-156.
 XIAO Chang-mei, LI Heng, PENG Pei. Development of Torpedo Defence Systems of Foreign Surface Ships[J]. TORPEDO TECHNOLOGY, 2014, 22(2):150-156.
[6] 邓飞,张宇文,陈伟政, 等. 头形对细长体超空泡生成与外形影响的实验研究[J]. 西北工业大学学报, 2004, 22(3):269-273.
 DENG Fei, ZHANG Yu-wen, CHEN Wei-zheng, et al. Experimental Investigation on the Incipiency and the Shape of Supercavity for Slender Bodies with Different Headforms[J]. Journal of Northwestern Polytechnical University, 2004, 22(3):269-273.
[7] 付英杰. 航行体锥段线型对自然空泡特性影响的数值模拟[J]. 舰船科学技术, 2010, 32(12):126-130.
 FU Ying-jie. Numerical research on influence of link section contour on natural cavity characteristics[J]. SHIP SCIENCE AND TECHNOLOGY, 2010, 32(12):126-130.
[8] 易文俊,李铁鹏,熊天红,等. 水下高速航行体自然超空泡形态特性仿真研究[J]. 南京理工大学学报(自然科学版), 2009, 33(3):330-334.
 YI Wen-jun, LI Tie-peng, XIONG Tian-hong, et al. Simulation on Natural supercavitation Characteristics of Underwater High-speed Vehicle[J]. Journal of Nanjing University of Science and Technology(Natural Science), 2009, 33(3):330-334.
[9] ZHANG Guang, YU Kai-ping, ZHOU Jing-jun. Numerical Research on Ventilated Supercavity Shape and Flow Structure in the Turning Motion[J]. Journal of Ship Mechanics, 2011, 15(12):1335-1343.
[10] 王复峰,王国玉,张敏弟, 等. 带空化器回转体空化流场研究[J]. 哈尔滨工程大学学报, 2015, 36(7):959-964.
 WANG Fu-feng, WANG Guo-yu, ZHANG Min-di, et al. Study on cavitating flows around an axisymmetric body with cavitators[J]. Journal of Harbin Engineering University, 2015, 36(7):959-964.
[11] 胡峰,罗凯,李淼, 等. 机动超空泡水下航行器纵平面运动特性分析[J]. 计算测量与控制, 2011, 19(7):1643-1646.
 HU Feng, LUO Kai, LI Miao, et al. Motion Characteristics on Vertical Plane of Maneuvering Supercavitating Underwater Vehicle[J]. Computer Measurement and Control, 2011, 19(7):1643-1646.
[12] LI Dai-jin, LUO Kai, ZHANG Yu-wen, et al. Studies on Fixed-depth Control of Supercavitating Vehicles[J]. ACTA AUTOMATICA SINICA, 2010, 36(3):421-426.
[13] Lin G, Balachandran B, Abed E H. Dynamics and control of supercavitating vehicles[J]. Journal of Dynamic Systems, Measurement, and Control. 2008, 130(02): 0210031 - 02100311
[14] Kirschner I N, Kring D C, Stokes A W, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control 2002, 8(2):219-242.
[15] 从敏,刘乐华.德国BARRACUDA超空泡高速水下导弹的制导与控制[J].飞航导弹,2007,37(5):38-43.
 CONG Min, LIU Le-hua. Guidance and control of high-speed supercavitation underwater missile of Germany[J]. Winged Missiles Journal, 2007,37(5):38.
[16] 杨洪澜,史文谱. 超空泡横截面独立膨胀原理解析及其应用[J]. 计算力学学报, 2014, 31(2):277-280.
 YANG Hong-lan, SHI Wen-pu. Analysis of supercavity cross section independent expansion principle and its applications[J]. Chinese Journal of Computational Mechanics, 2014, 31(2):277-2.
[17] 李雨田,张宇文.空泡外形对超空泡航行器机动回转运动影响[J].  振动与冲击,2014,33(16):165-170.
 Li Yu-tian, Zhang Yu-wen. The Influence of Cavity Shape on Maneuvering Rotational Movement of Supercavitating Vehicle[J]. Journal of Vibration and Shock, 2014, 33(16): 165-170.

PDF(2080 KB)

383

Accesses

0

Citation

Detail

段落导航
相关文章

/