基于分数阶热弹性理论的圆形隧洞热弹性耦合动力响应

闻敏杰1,2,徐金明2,熊厚仁2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 89-94.

PDF(1264 KB)
PDF(1264 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 89-94.
论文

基于分数阶热弹性理论的圆形隧洞热弹性耦合动力响应

  • 闻敏杰1,2,徐金明2,熊厚仁2
作者信息 +

Coupled dynamic response of a cylindrical tunnel based on fractional order thermo-elasticity theory

  • WEN Minjie1,2,  XU Jinming2,  XIONG Houren2
Author information +
文章历史 +

摘要

基于分数阶热弹性理论,研究了热/力源作用下无限大土体中圆形隧洞的热弹性耦合瞬态动力响应。建立了圆形隧洞内壁面受到随时间变化的热、力冲击作用下周围土体的控制方程,利用Laplace变换得到了土体的无量纲温度增量、径向位移、径向应力和环向应力等的解析表达式。在此基础上,利用Laplace逆变换Crump数值反演法得到了土体在时间域的动力响应。数值分析了分数阶参数对热/力源条件下土体的温度、径向位移、径向应力和环向应力的影响。研究表明:热源作用下分数阶参数对径向位移的影响较小,对温度增量、径向应力和环向应力影响较大。而在热力共同作用下,分数阶参数对土体的温度增量影响显著,而对径向位移、径向应力和环向应力的影响较小。随着剪切模量的增加,位移的峰值逐渐减小.

Abstract

Based on the generalized fractional order thermo-elasticity theory, coupled dynamic response of a cylindrical tunnel in an infinite soil under the action of heat/power source was investigated with the analytical method.The governing dynamic equations of the surrounding soil under time-varying thermal or force impact on inner wall surface of the circular tunnel were established.The analytical expressions for dimensionless temperature increment, radial displacement, radial stress and circumferential stress of soil body were obtained using Laplace transformation.Then, dynamic responses of soil body in time domain were obtained with Laplace Inverse Transformation and Crump numerical inversion method.Effects of fractional order parameters on soil body’s temperature, radial displacement, radial stress and circumferential stress under heat/power source were analysed numerically.It was shown that fractional order parameters have less influence on soil radial displacement, but have larger influence on soil temperature increment, radial stress and circumferential stress under action of heat source; fractional order parameters have significant influence on soil temperature increment, but have less influence on soil radial displacement, radial stress and circumferential stress under the joint action of heat and power sources; with increase in shear modulus, displacement peak values gradually decrease.

关键词

圆形隧洞 / 分数阶 / 广义热弹性理论 / 动力响应 / Laplace变换

Key words

cylindrical tunnel / fractional order / generalized thermo-elasticity theory / dynamic response / Laplace transformation

引用本文

导出引用
闻敏杰1,2,徐金明2,熊厚仁2. 基于分数阶热弹性理论的圆形隧洞热弹性耦合动力响应[J]. 振动与冲击, 2020, 39(21): 89-94
WEN Minjie1,2, XU Jinming2, XIONG Houren2. Coupled dynamic response of a cylindrical tunnel based on fractional order thermo-elasticity theory[J]. Journal of Vibration and Shock, 2020, 39(21): 89-94

参考文献

[1] 张小勇, 龚顺风. 隧道内爆炸作用下衬砌结构损伤机理及抗爆性能研究[J]. 振动与冲击, 2013, 32(22): 193-199.
    ZHANG Xiao-yong, GONG Shun-feng. Investigation on damage-mechanism and anti-explosion behavior of tunnel lining structures under internal blast loading[J]. Journal fo Vibration and Shock, 2013, 32(22): 193-199.
[2] 赵跃堂, 冠伟晓, 储程, 等. 管片衬砌结构在接触爆炸作用下的毁伤特性分析[J]. 振动与冲击, 2018, 37(11): 95-100.
    ZHAO Yue-tang, KOU Weixiao, CHU Cheng, et al. Damage Characteristics analysis for segment lining structures under contact detonation[J]. Journal fo Vibration and Shock, 2018, 37(11): 95-100.
[3] Abd-Alla A M, Abbas I A. A problem of generalized magnetothermoelasticity for an infinitely long perfectly conducting cylinder[J]. Journal of Thermal Stresses, 2002, 25(11): 1009-1025.
[4] He T H, Shi S H. Effect of temperature-depenent properties on thermoelastic problems with thermal relaxations[J]. Acta Mechanica Solda Sinica, 2014, 27(4): 412-419.
[5] 孙飞, 刘五洋, 张伦伟. 功能梯度半空间体的热弹性问题研究[J]. 力学季刊, 2017, 38(3): 537-544.
    SUN Fei, LIU Wu-xiang, ZHANG Lun-wei. Study of thermoelasticity problem of half-space functionally graded material[J]. Chinese quarterly of mechanics, 2017, 38(3): 537-544.
[6] Abbas, I A. Finite element method of thermal shock problem in a non-homogeneous isotropic hollow cylinder with two relaxation times[J]. Forsch Ingenieurwes, 2008, 72: 101-110.
[7] Aouadi M. A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion[J]. International Journal of Solids and Structures, 2007, 44: 5711-5722.
[8] Sherief H H, Elmisiery A E M, Elhagary M A. Generalized thermoelastic problem for an infinitely long hollow cylinder for short times[J]. Journal of Thermal Stresses, 2004, 27: 885-902.
[9] 郑荣跃, 刘干斌, 唐国金. 考虑扩散效应圆形隧洞热弹性耦合动力响应研究[J]. 国防科技大学学报, 2008, 30(3): 27-31.
ZHANG Rong-yue, LIU Gan-bin, TANG Guo-jin. Thermodynamic response of a cylindrical tunnel in the theory of generalized thermoelastic diffusion[J]. Journal of National University of Defense Technology, 2008, 30(3): 27-31.
[10] Youssef H M. Theory of fractional order generalized thermoelasticity[J]. Journal of Heat Transfer(ASME), 2010, 132(6):1-7.
[11] Youssef H M. Variational principle of fractional order generalized thermoelasticity[J]. Applied Mathematics Letters, 2010, 23(10): 1183-1187.
[12] Bachher M, Sarkar N, Lahiri A. Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources[J]. Meccanica, 2015, 50(8): 2167-2178.
[13] Abbas I A. Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity[J]. Applied Mathematical Modelling, 2015, 39: 6196-6206.
[14] Abbas I A . Fractional Order Theory of Thermoelastic Diffusion Problem for an Infinite Medium with Cylindrical Cavity[J]. Journal of Computational and Theoretical Nanoscience, 2015, 12(10): 3118-3124.
[15] Abouelregal A E. Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat[J]. Meccanica, 2013, 48(7): 1731-1745.
[16] Sherief H H, EI-Sayed A M A, EI-Latief A M A. Fractional order theory of thermoelasticity[J]. International Journal of Soilds and Structures, 2010, 47(2): 269-275.
[17] 杨桂通,张善元. 弹性土动力学[M]. 北京:中国铁道出版社, 1988: 199―203.
YANG Gui-tong, ZHANG Shan-yuan. Elastic dynamics[M]. Beijing: China Railway Publishing House, 1988: 199-203.
[18] Crump K S. Numerical inversion of Laplace transforms using a Fourier series approximation[J]. ACM, 1976, 23(1): 89-96.

PDF(1264 KB)

298

Accesses

0

Citation

Detail

段落导航
相关文章

/