斜向载荷下多胞方管结构的压溃特性研究

李志超1,康英姿1,甄冉2,李瑞龙2,上官文斌1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 95-100.

PDF(1655 KB)
PDF(1655 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (21) : 95-100.
论文

斜向载荷下多胞方管结构的压溃特性研究

  • 李志超1,康英姿1,甄冉2,李瑞龙2,上官文斌1
作者信息 +

Collapse characteristics of multi-cell square tube structure under oblique load

  • LI Zhichao1, KANG Yingzi1, ZHEN Ran2, LI Ruilong2, SHANGGUAN Wenbin1
Author information +
文章历史 +

摘要

建立了计算多胞方管能量吸收特性的有限元模型,利用双胞管的轴向压溃变形试验验证有限元模型的准确性。利用建立的有限元模型,研究了在斜向加载下多胞方管结构的压溃特性,结果表明:在大角度的斜向加载下,多胞方管会发生全局弯曲,导致能量吸收能力的显著下降。提出了分层多胞方管结构,在斜向加载下分层多胞方管结构有较大的能量吸收能力和压溃力效率。此外,在大角度的斜向加载下,分层多胞方管可以避免发生全局弯曲。通过复杂比例评价方法,评价了传统方管、多胞方管和分层多胞方管的斜向综合碰撞性能,确定了分层多胞方管L5具有最优的斜向碰撞性能。

Abstract

The finite element model for calculating energy absorption characteristics of multi-cell square tube structure was established, and axial collapse tests of double-cell tubes were used to verify the correctness of the established model.The developed model was used to study collapse characteristics of multi-cell square tube structure under oblique load.Results showed that multi-cell square tube structure can have the global buckling deformation under oblique loads with angles of 20°and 30° to cause significant drop of its energy absorption capacity.Thus, a layered multi-cell square tube structure was proposed.It was shown that the layered multi-cell square tube structure has a larger energy absorption capacity and crushing force efficiency under oblique loading; under oblique loads with large angles, it can avoid the global buckling deformation.Using the complex proportion assessment method, oblique comprehensive impact performances of traditional square tubes, multi-cell ones and layered multi-cell ones were evaluated to determine the layered multi-cell square tube L5 having the optimal oblique impact performance.

关键词

能量吸收 / 多胞薄壁方管 / 斜向加载 / 有限元分析

Key words

energy absorption / multi-cell square tube / oblique load / finite element analysis

引用本文

导出引用
李志超1,康英姿1,甄冉2,李瑞龙2,上官文斌1. 斜向载荷下多胞方管结构的压溃特性研究[J]. 振动与冲击, 2020, 39(21): 95-100
LI Zhichao1, KANG Yingzi1, ZHEN Ran2, LI Ruilong2, SHANGGUAN Wenbin1. Collapse characteristics of multi-cell square tube structure under oblique load[J]. Journal of Vibration and Shock, 2020, 39(21): 95-100

参考文献

[1]  张秧聪, 许平, 彭勇,等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12):31-36.
ZHANG Yangcong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12):31-36.
[2]  Tran T N, Baroutaji A. Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading[J]. Engineering Failure Analysis, 2018, 93: 241-256.
[3]  Chen S, Yu H, Fang J. A novel multi-cell tubal structure with circular corners for crashworthiness[J]. Thin-Walled Structures, 2018, 122: 329-343.
[4]  Li W, Luo Y, Li M, et al. A more weight-efficient hierarchical hexagonal multi-cell tubular absorber[J]. International Journal of Mechanical Sciences, 2018, 140: 241-249.
[5]  Fang J, Gao Y, Sun G, et al. On design of multi-cell tubes under axial and oblique impact loads[J]. Thin-Walled Structures, 2015, 95: 115-126.
[6]  Zou X, Gao G, Dong H, et al. Crashworthiness analysis and structural optimisation of multi-cell square tubes under axial and oblique loads[J]. International Journal of Crashworthiness, 2017, 22(2):129-147.
[7]  Qiu N, Gao Y, Fang J, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases[J]. Finite Elements in Analysis & Design, 2015, 104:89-101.
[8]  Azimi M B, Asgari M, Salaripoor H. A new homo-polygonal multi-cell structures under axial and oblique impacts; considering the effect of cell growth in crashworthiness[J]. International Journal of Crashworthiness, 2019: 1-18.
[9]  Pirmohammad S, Nikkhah H. Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads[J]. Proc IMechE Part D: Journal of automobile engineering, 2018, 232(3): 367-383.
[10]  Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler[J]. International Journal of Impact Engineering, 2000, 24(4): 347-383.
[11]  Ying L, Dai M, Zhang S, et al. Multiobjective crashworthiness optimization of thin-walled structures with functionally graded strength under oblique impact loading[J]. Thin-Walled Structures, 2017, 117: 165-177.
[12]  Zhang X, Zhang H. Energy absorption of multi-cell stub columns under axial compression[J]. Thin-Walled Structures, 2013, 68:156-163.

PDF(1655 KB)

Accesses

Citation

Detail

段落导航
相关文章

/