针对轨道车辆运行中受到来自轨道不平顺的多维多点随机激励,采用多维多点虚拟激励法求解其的动力响应。建立某地铁列车的车体、构架、轮对之间相互作用的有限元模型,通过在有限元模型激励处置入大质量,并将推导出的多维多点力功率谱密度矩阵施加于大质量上,然后运用绝对位移直接求解运动方程,最后利用三区间法对转向架构架焊缝疲劳薄弱位置进行寿命预测。计算结果显示,构架的刚性沉浮、横摆、点头模态与弹性扭转模态对其疲劳寿命有较大的影响。研究过程表明,基于多维多点虚拟激励法的振动疲劳计算方法避免了传统虚拟激励法求解拟静态矩阵的繁琐,从而能更高效、快速地求解出车辆运行时的动力响应,同时可为转向架构架从刚度协调的角度提高抗疲劳能力及优化设计提供一种新的途径。
Abstract
In order to analyze the dynamic responses of railway vehicles under the random excitation from track irregularity, a multi-dimensional and multi-support pseudo excitation method was proposed.The finite model of a metro train considering the interaction among the car body, frame and wheelset was established, in which a large mass was set at the excitation place and subjected to the excitation of the derived multi-dimensional and multi-support force power spectral density matrix.Then the motion equations of railway vehicles were directly solved by using the absolute displacement method.Finally, the three-interval method was used to predict the fatigue life of bogie frame welds.The results show that the rigid modes of bounce, yaw, pitch and the elastic mode of torsion of the bogie frame have great influence on its fatigue life.The results indicate that the vibration fatigue calculation method based on multi-dimensional and multi-support pseudo excitation method can avoid the tedious calculation for the quasi-static matrix by the traditional virtual excitation method, and solve the dynamic responses of vehicles more efficiently and quickly.The study provides a new way for improving the fatigue resistance capability and the optimum design of bogie frames from the aspect of stiffness coordination.
关键词
虚拟激励法 /
多维多点 /
绝对位移 /
随机振动 /
疲劳寿命
{{custom_keyword}} /
Key words
pseudo excitation method /
multi-dimensional and multi-support /
absolute displacement /
random vibration /
fatigue life
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林家浩,张亚辉. 随机振动的虚拟激励法[M]. 北京:科学出版社,2004.
[2] 孟建军,杨泽青,蒲光华,等. 基于虚拟激励法的轨道车辆垂向振动响应分析[J]. 中国铁道科学,2012,33(2):89-94.
MENG Jian-Jun, YANG Ze-Qing, PU Guang-Hua,et al. Vertical vibration response analysis of railway vehicle based on pseudo excitation method [J]. China Railway Science, 2012, 33(2): 89-94.
[3] 周劲松,李大光,沈钢,等. 磁浮车辆运行平稳性的虚拟激励法分析方法[J]. 交通运输工程学报,2008,8(1):5-9.
ZHOU Jin-Song, LI Da-Guang, SHEN Gang, et al. Pseudo-excitation analysis method of riding quality for maglev vehicle [J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 5-9.
[4] 李永华,李思明. 绝对位移直接求解的虚拟激励法[J]. 振动与冲击,2009,28(10):185-190.
LI Yong-Hua, LI Si-Ming. Absolute displacement directly solve of the pseudo-excitation method [J].Vibration and Shock, 2009, 28(10): 185-190.
[5] 贾宏宇,郑史雄. 直接求解多维多点地震方程的虚拟激励法[J]. 工程力学,2013,30(3):341-346.
JIA Hong-Yu, ZHENG Shi-Xiong. Pseudo excitation method of direct solving ground motion equation of multi-dimensional and multi-support excitation [J]. Engineering Mechanics, 2013, 30(3), 341-346.
[6] JIA Hong-Yu, ZHANG De-Yi, ZHENG Shi-Xiong. et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69.
[7] JIA Hong-Yu, ZHAO Jin-Gang. Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site condition[J]. Earthquakes and Structures, 2018, 15(2): 193-202.
[8] JIA Hong-Yu, Lan Xian-Lin, Zheng Shi-Xiong. Assessment on required separation length between adjacent bridge segments to avoid pounding[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 398-407.
[9] Steinberg D S. Preventing thermal cycling and vibration failures in electronic equipment [M]. New York:Wiley-inter science, 2001.
[10] 王福天. 车辆系统动力学[M]. 北京:中国铁道出版社,1994.
[11] 王明珠. 结构振动疲劳寿命分析方法研究[D]. 南京航空航天大学,南京,2009.
[12] 朱涛,肖守讷,刘建树,等. 基于频域法的转向架构架疲劳寿命研究[J]. 机械强度,2016,38(1):160-166.
ZHU Tao, XIAO Shou-Ne, LIU Jian-Shu, et al. Study on fatigue life in frequency domain for bogie frame[J]. Journal of Mechanical Strength, 2016, 38(1): 160-166.
[13] D. Younesian, A. Solhmirzaei, A. Gachloo. Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory[J]. Journal of Mechanical Science and Technology, 2009, 23(8): 2149-2156.
[14] S. Palli, R Koona, et al. Dynamic analysis of Indian railway integral coach factory bogie[J]. International Journal of Vehicle Structures and Systems, 2015, 6(4): 16-20.
[15] 贾宏宇,郑史雄,陈冠桦. 多维多点虚拟激励法在ANSYS中的应用[J]. 地震工程与工程振动,2012,32(4):7-12.
JIA Hong-Yu, ZHENG Shi-Xiong, CHEN Guan-Hua. Pseudo excitation method applied to multi-dimensional and multi-support excitations in ANSYS [J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(4): 7-12.
[16] 李国栋,王建斌,曾京. 转向架构架模态频率与疲劳损伤参数敏感性研究[J]. 机械工程学报,2018,54(4):264-269.
LI Guo-Dong, WANG Jian-Bin, ZENG Jing. Parametric sensitivity study on modal frequency respect to fatigue damage of bogie frame[J], Journal of Mechanics Engineering, 2018, 54(4): 264-269.
[17] 贺小龙,张立民,鲁连涛,等. 高速列车车体模态贡献量对振动的影响分析[J]. 铁道学报,2017,39(12):16-22.
HE Xiao-Long, ZHANG Li-Min, LU Lian-Tao, et al. Analysis of impact of modal contribution factors of high-speed train body on vibration[J]. Journal of The China Railway Society, 2017, 39(12): 16-22.
[18] 徐宁,任尊松,薛蕊. 高速动车组时频域响应特征及振动传递特性研究[J]. 铁道学报,2019,41(2):31-40.
XU Ning, REN Zun-Song, XUE Rui. Time and frequency domain response and vibration transfer characteristics of high-speed EMU[J]. Journal of The China Railway Society, 2019, 41(2): 31-40.
[19] A. Esderts, J. Willen, M. Kassner. Fatigue strength analysis of welded joints in closed steel sections in rail vehicles[J]. International Journal of Fatigue, 2012, 34(1): 112-121.
[20] BS7608-2014, Guide to fatigue design and assessment of steel products[S]. London, UK: British Standards Institution, 2014.
[21] 张勇阳. 高速转向架构架疲劳强度研究[D]. 西南交通大学,成都,2016.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}