低速冲击下球形机器人GFRP球壳的动力学响应及损伤评估

马龙,孙汉旭,兰晓娟,王志强

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 198-206.

PDF(2254 KB)
PDF(2254 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 198-206.
论文

低速冲击下球形机器人GFRP球壳的动力学响应及损伤评估

  • 马龙,孙汉旭,兰晓娟,王志强
作者信息 +

Dynamic response and damage assessment of the GFRP spherical shell of a spherical robot under low velocity impact

  • MA Long,SUN Hanxu,LAN Xiaojuan,WANG Zhiqiang
Author information +
文章历史 +

摘要

球形机器人工作过程中受到的低速冲击能够对其内部装置与运行精度产生重大威胁。针对球形机器人的玻璃纤维增强聚合物(GFRP,Glass Fiber Reinforced Polymer)薄壁球壳结构可能受到的大变形动载作用,进行GFRP球壳的低速冲击损伤研究,分为试验和仿真两个方面,通过不同冲击速度的低速冲击试验与准静态压缩试验得出GFRP球壳的动力学响应及剩余承载力,并且基于Hashin准则建立球壳的复合结构渐进损伤仿真模型,阐明其在不同冲击速度下的应力分布、结构变形模式和能量耗散机制。研究结果再现了球形机器人球壳在严苛环境下发生变形与侵彻贯穿的情况,得到了球壳发生侵彻贯穿的临界冲击速度范围,对高性能球形机器人的研制及其精准控制的实现有着极为重要的意义。

Abstract

The low velocity impact on a spherical robot during its work can pose a major threat to its internal devices and operational accuracy.Aiming at the possible large deformation and dynamic loading beared by the glass fiber reinforced polymer (GFRP) thin-walled spherical shell structure of the spherical robot, the low velocity impact damage of the GFRP spherical shell was studied by experiments and numerical simulations.The dynamic response and residual bearing capacity of the shell were obtained by low velocity impact tests and quasi-static compression tests with different impact velocities.A progressive damage simulation model of the composite spherical shell for demonstrating  the expounded stress distribution, structural deformation mode and energy dissipation mechanism under impact was established based on the Hashin criterion.The results reproduce the deformation and penetration processes of the spherical shell of the spherical robot in harsh environment, and its critical impact velocity range is presented.It is benefitial to the development of high-performance spherical robots and the realization of accurate control.

关键词

球形机器人 / GFRP / 球壳结构 / 渐进损伤 / 动力学响应

Key words

spherical robot / glass fiber reinforced polymer(GFRP) / spherical shell structure / progressive damage / dynamic response

引用本文

导出引用
马龙,孙汉旭,兰晓娟,王志强. 低速冲击下球形机器人GFRP球壳的动力学响应及损伤评估[J]. 振动与冲击, 2020, 39(22): 198-206
MA Long,SUN Hanxu,LAN Xiaojuan,WANG Zhiqiang. Dynamic response and damage assessment of the GFRP spherical shell of a spherical robot under low velocity impact[J]. Journal of Vibration and Shock, 2020, 39(22): 198-206

参考文献

[1] SHI Chengkun, SUN Hanxu. Research on the motion performance of the spherical mobile robot wrapped by a netlike spherical shell [J]. International Conference on Mechatronics & Automation IEEE, 2007: 11-14.
[2] J. Lee, D. Lee, J. Park, et al. Carbon/epoxy composite foot structure for biped robots [J]. Composite Structures, 2016, 140: 344–350.
[3] F.R. Hogan, J.R. Forbes. Modeling of a Rolling Flexible Spherical Shell [J]. Journal of Applied Mechanics, 2016, 83(9): 091010.
[4] 马杰. 轴向冲击载荷下球柱组合壳动力屈曲数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
MA Jie. Numerical Research on Dynamic Bucking of Sphere-cylinder Combined Shell under Axial Impact Load [D]. Harbin: Harbin Engineering University, 2015.
[5] R.I. Hammond, W.G. Proud, H.T. Goldrein, et al. High-resolution optical study of the impact of carbon-fibre reinforced polymers with different lay-ups [J]. International Journal of Impact Engineering, 2014, 30(1): 69-86.
[6] R.N Ganapathy, M.P Ashin, M. Saravanan, et al. The study of mechanical properties and loadcarrying ability of plant based fibre cement composites [J]. Journal of Industrial Pollution Control, 2017, 33(S3): 1356-1359.
[7] Krishnamurthy S. Pre-stressed advanced fibre reinforced composites fabrication and mechanical performance [D]. Bedfordshire: Cranfield University, 2006.
[8] A.V. Pogorelov. The Stability of Axisymmetric Deformations of Spherical Shells under Axisymmetric Loads [J]. Soviet Physics Doklady, 1964, 151(8): 1053-1055.
[9] 宁建国, 杨桂通. 球形扁壳在冲击载荷作用下的超临界变形[J]. 爆炸与冲击, 1992, 12(3): 206-212.
NING Jianguo, YANG Guitong. Supercritical deformation of shallow spherical shells under impact [J]. Explosion and Shock Waves, 1992, 12(3): 206-212.
[10] Z. Zhu, X. Kuang, G. Carotenuto, et al. Fabrication and properties of carbon fibre-reinforced copper composite by controlled three-step electrodeposition [J]. Journal of Materials Science, 1997, 32(4): 1061-1067.
[11] S.S. Morye, P.J. Hine, R.A. Duckett, et al. Modelling of the energy absorption by polymer composites upon ballistic impact [J]. Composites Science and Technology, 2000, 60(14): 2631-2642.
[12] 王文谈. 超高性能纤维增强混凝土(UHPFRC)的实验研究及低速冲击有限元模型[D]. 成都: 西南交通大学, 2015.
WANG Wentan. Experimental Study and Finite Element Simulation of Low velocity Impact for Ultra High Performance Fiber Reinforce Concrete(UHPFRC) [D]. Chengdu: Southwest Jiaotong University, 2015.
[13] G. Caprino, V. Tagliaferri. Maximum cutting speed in laser cutting of fiber reinforced plastics [J]. International Journal of Machine Tools and Manufacture, 1988, 28(4): 389-398.
[14] M. Schwab, M. Todt, M. Wolfahrt, et al. Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements [J]. Composites Science and Technology, 2016, 128: 131-137.
[15] 巴塔西. 含冲击损伤复合材料层压板表面应变特征研究[D]. 上海: 上海交通大学, 2013.
BATAXI: Surface Strain Characteristics of Composite Laminate with Impact Damage [D]. Shanghai: Shanghai Jiao Tong University, 2013.
[16] 徐瑀童, 左洪福, 陆晓华, 等. 复合材料低速冲击损伤评估数值分析与试验研究[J]. 振动与冲击, 2019, 38(3): 149-155.
XU Yutong, ZUO Hongfu, LU Xiaohua, et al. Numerical analysis and tests for low-velocity impact damage evaluation of composite material [J]. Journal of Vibration and Shock, 2019, 38(3): 149-155.
[17] 伊鹏跃, 李真, 陈秀华, 等. 基于实体-壳耦合模型的复合材料层压板冲击损伤阻抗优化[J]. 复合材料学报, 2013, 30(3): 206-212.
YI Pengyue, LI Zhen, CHENG Xiuhua, et al. Optimizing damage resistance of composite under low-velocity impact based on the application of solid-shell coupling model [J]. Acta Materiae Compositae Sinica, 2013, 3: 191-197.
[18] 史红彬, 杨世源, 王军霞, 等. 碳纤维/环氧树脂复合材料圆筒在低速横向冲击下的数值研究[J]. 材料导报, 2011, 24(25): 148-152.
SHI Hongbin, YANG Shiyuan, WANG Junxia, et al. Numerical Study of Carbon Fiber Reinforced Epoxy Composite Cylinders Subjected to Low-velocity Transverse Impact [J]. Materials Review, 2011, 24(25): 148-152.
[19] 刘万雷, 常新龙, 张晓军, 等. 基于改进Hashin准则的复合材料低速冲击损伤研究[J]. 振动与冲击, 2016, 35(12): 209-214.
LIU Wanlei, CHANG Xinlong, ZHANG Xiaojun, et al. Low-velocity impact analysis of composite plates based on modified Hashin criterion [J]. Journal of Vibration and Shock, 2016, 35(12): 209-214.

PDF(2254 KB)

Accesses

Citation

Detail

段落导航
相关文章

/