连续刚构桥弹塑性力学行为分析的传递矩阵法

孙建鹏1,2,刘银涛1,周鹏1,李青宁1,黄文锋3,龚国峰2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 234-242.

PDF(2317 KB)
PDF(2317 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 234-242.
论文

连续刚构桥弹塑性力学行为分析的传递矩阵法

  • 孙建鹏1,2,刘银涛1,周鹏1,李青宁1,黄文锋3,龚国峰2
作者信息 +

Developed transfer matrix method for analysing the elastic-plastic behavior of a continuous rigid frame bridge

  • SUN Jianpeng1,2,LIU Yintao1, ZHOU Peng1, LI Qingning1, HUANG Wenfeng3,GONG Guofeng2
Author information +
文章历史 +

摘要

本文提出了一种分析连续刚构桥弹塑性区域的传递矩阵法,其主要针对的是弹塑性单元。弹塑性单元包含弹性区域和塑性区域两部分,通过截面的应力分析确定弹性区和塑性区的比例分配从而反应该截面处的弹塑性力学行为。首先,对整体结构的力学行为进行分析,确定结构发生弹塑性变形的部位;其次,在该部位建立弹塑性传递矩阵并进行应力分析确定弹性和塑性区域的比例分配;最后,进行整体结构的力学行为分析。通过与理论解的对比验证了本文所提方法的有效性,并运用本文方法对连续刚构桥的弹塑性力学行为进行了计算分析。本文所提的方法为结构的弹塑性设计及进一步研究工程结构的灾变历程提供了一种新的方法。

Abstract

The transfer matrix method for analyzing the elastoplastic behavior of a continuous rigid frame bridge was proposed.The method mainly aims at the design of an elastoplastic unit, which consists of two parts, the elastic region and the plastic region.At a certain cross section, the elastoplastic mechanical behaviors were reflected by the proportional distribution of the elastic and plastic zones which were determined by the stress distribution of the cross section.First, the mechanical behavior of the structure was analyzed to determine the location of the elastoplastic deformation of the structure.Then, in the located region, the elastoplastic transfer matrix was established and the stress analysis was performed to determine the proportional distribution of the elastic and plastic regions.Finally, the mechanical behaviors of the overall structure were analysed.The effectiveness of the proposed method was verified by comparing with the theoretical solution.On this basis,the elastoplastic mechanical behavior of the continuous rigid frame bridge was calculated and analyzed.The method proposed provides a new way for the elastoplastic design of structures and gives references to the further study of the catastrophic history of engineering structures.

关键词

弹塑性单元 / 力学行为 / 传递矩阵 / 连续刚构桥

Key words

elastic-plastic element / mechanical behavior / transfer matrix;continuous rigid frame bridge

引用本文

导出引用
孙建鹏1,2,刘银涛1,周鹏1,李青宁1,黄文锋3,龚国峰2. 连续刚构桥弹塑性力学行为分析的传递矩阵法[J]. 振动与冲击, 2020, 39(22): 234-242
SUN Jianpeng1,2,LIU Yintao1, ZHOU Peng1, LI Qingning1, HUANG Wenfeng3,GONG Guofeng2. Developed transfer matrix method for analysing the elastic-plastic behavior of a continuous rigid frame bridge[J]. Journal of Vibration and Shock, 2020, 39(22): 234-242

参考文献

[1]叶爱君.桥梁抗震[M].北京:人民交通出版 社,2002.
Ye A J.Bridges Seismic[M]. Beijing:China Communications Press,2002.
[2] G P Mavroeidis,G Dong,A S Papageorgiou. Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems[J].Earthquake Engineering & Structural Dynamics,2004,33(9):1023-1049
[3] A K Chopra,C Chintanapakdee.Inelastic Deformation Ratios for Design and Evaluation of Structures: Single-Degree-of-Freedom Bilinear Systems[J]. Journal of Structural Engineering, 2004,130(9):1309-1319
[4]T L Karavasilis,C Y Seo,N Makris.Dimensional Response Analysis of Bilinear Systems Subjected to Non-Pulse-Like Earthquake Ground Motions[J].Journal of Structural Engineering, 2011,137(5): 600-606.
[5]Petruška, Jindřich,Kubík, Petr,Hůlka, Jiří,Šebek, František.Ductile fracture criteria in prediction of chevron cracks [J].Advanced Materials Research, 2013,716:653-658
[6]S A Firstov,Y N Podrezov,LG Shtyka,AG Zherdin,AA Malyshenko, Modeling of the ductile-brittle transition in porous metallic materials under conditions of crack resistance tests[J].Powder Metallurgy and Metal Ceramics, 1990,29(5):411-416.
[7]A Pineau.Modeling ductile to brittle fracture transition in steels-micromechanical and physical challenges[J]. International Journal of Fracture, 2008,150(1):129-156.
[8]刘大明,刘文洁,大跨度连续刚构桥的弹塑性动力时程分析[J],山西建筑,2010,26:320-322.
   Liu D M,Liu W J,On elastoplastic dynamic time-history analysis of large-span continuous rigid bridge[J], Shanxi Architecture, 2010, 26: 320-322,DOI:10. 13719/ j. cnki . cn14 1279/ tu. 2010. 26. 063.
[9]谢敬之,基于塑性铰模型和纤维模型的高墩连续钢构桥弹塑性地震反应对比分析[J],工程技术研究,2018.09:18-23.
 Xie J Z,Elastic-Plastic Comparative Analysis of Seismic Response of a Continuous Rigidframe Bridges with High-Rise Piers Based on Fiber Model and Plastic-Hinge Model[J],Engineering Technology Research,2018.09:18-23.DOI:10.19537/j.cnki.2096-2789.2018.10.007
[10]刘道宽,高墩大跨连续刚构桥静力弹塑性地震反应分析[J],山西建筑,2013,3:167-168.
   Liu D K,On pushover seismic reaction analysis of high-pier and largespan continuous rigid frame bridges [J],Shanxi Architecture, 2013, 3: 167-168,DOI:10.13719/j.cnki.cn14-1279/tu.2013.08.054.
[11]白 亮,谢鹏飞,周天华等.钢管约束高强混凝土剪力墙压弯承载力及截面变形能力设计方法研究[J].工程力学,2017,34(11):175-183.
Bai L,,Xie P F,Zhou T H,etc.Study on design method of axial force-moment capacity and sectional deformation capacity of steel tube cinfined high-strength concrete shear walls[J].Engineering Mechanics, 2017,34(11):175-183.
[12]孙治国,司炳君,王东升等.高强箍筋高强混凝土柱约束箍筋用量研究[J].工程力学,2010,27(10):182-189+213.
  Sun Z G,Si B J,Wang D S, etc. Research on confining reinforcement for high-strength concrete columns with high-strength stirrups[J].Engineering Mechanics, 2010,27(10):182-189+213.
[13]Di Y, Li xun Cai, Chen Bao.A new fracture criterion for ductile materials based on a finite element aided testing method[J].Materials Science & Engineering A ,2016,673:633–647.
[14]Huanjun Jiang,Xi lin Lu,Jiejiang Zhu. Performance-based seismic analysis and design of code-exceeding tall buildings in Mainland China[J].Structural Engineering and Mechanics, 2012, 43(4):1-16.
[15]程麦理,李青宁,孙建鹏,尹俊红,闫磊.强震作用下变截面超高桥墩竖向时滞分析的传递矩阵法[J],中南大学学报(自然科学版),2017,3:788-793.
   Cheng M L,Li Q N,Sun J P,Yin J H,Yan L,Vertical time lag effect analysis of variable cross-section high piers under strong earthquake excitation[J], Journal of Central South University (Science and Technology),2017,3:788-793,DOI: 10.11817/j.issn.1672-7207.2017.03.029 .
 [16]闫仙丽,李青宁.求解曲线箱梁空间振动特性的 Cayley-Hamilton 传递矩阵法[J].振动与冲击,2017,8(36):139-143.
Yan X L,,Li Q N.A Cayley-Hamilton transfer matrix method for solving the vibration characteristics of curved box beams [J].Journal of shock and vibration,2017,8(36):139-143,DOI:10.13465/j.cnki.jvs.2017.08.022
[17]尹俊红,李青宁.高墩稳定性分析的传递矩阵法[J].工业建筑,2013:199-202.
Yin J H, Li Q N.Transfer matrix method for stability analysis of high pier[J]. Industrial building,2013,DOI:10.13204/j.gyjz2013.s1.066.
[18]张素英,邓子辰.非线性动力方程的增维精细积分法[J].计算力学学报,2003,20(4):423-426.
Zhang S Y, Deng Z C.Incremental-dimensional precise integration method for nonlinear dynamic equation[J]. Chinese Journal of Computional Mechanics,2003,20(4):423-426.
[19]孙建鹏,李青宁.多点地震输入下结构地震反应分析的频域精细传递矩阵法[J].建筑结构学报,2010,31(2):48-53.
Sun J P, Li Q N.Precise frequency domain transfer matrix method for seismic response analysis of structures undermulti-support excitations[J]. Journal of Building Structures,2010,31(2):48-53.

PDF(2317 KB)

545

Accesses

0

Citation

Detail

段落导航
相关文章

/