侧向爆破荷载作用下地下厂房高端墙振动预测与安全分析

范勇1,2,崔先泽1,冷振东1,卢文波2,王峰1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 268-277.

PDF(2067 KB)
PDF(2067 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 268-277.
论文

侧向爆破荷载作用下地下厂房高端墙振动预测与安全分析

  • 范勇1,2,崔先泽1,冷振东1,卢文波2,王峰1
作者信息 +

Vibration prediction and safety analysis of the high-end wall of a underground powerhouse under the action of lateral blasting load

  • FAN Yong1,2, CUI Xianze1, LENG Zhendong1, LU Wenbo2, WANG Feng1
Author information +
文章历史 +

摘要

在水工建筑物附近进行大规模爆破施工时,爆破产生的振动效应直接影响水工建筑物的安全稳定。本文针对侧向爆破荷载作用下邻近厂房高端墙的振动效应展开研究,结合萨道夫斯基公式和薄板模型建立了反映中心放大效应的高端墙爆破振动峰值预测模型,以深溪沟水电站灌排洞爆破开挖为例,分析了灌排洞爆破施工在邻近厂房高端墙产生的振动空间分布特征,并采用实测爆破振动数据对预测模型进行了训练和检验;基于确定的高端墙爆破振动安全控制标准,对侧向爆破荷载作用下地下厂房高端墙安全性进行了分析。研究结果表明:爆破应力波传至地下厂房高端墙时会发生反射,反射回来的应力波与入射应力波叠加,会加剧高端墙的振动效应,呈现出非常明显的中心放大现象;保障厂房高端墙安全的关键在于控制其中心的爆破振动峰值,尤其要严格控制垂直于高端墙方向的爆破振动幅值,不得大于1.2 cm/s(以C20标号的混凝土厂房为例),从而避免高端墙发生张拉破坏。

Abstract

During construction large-scale blasting near the hydraulic structures may cause strong vibration directly affecting the safety and stability of hydraulic structures.The vibration effects on the high-end wall of a underground powerhouse under the action of lateral blasting load was studied.Combining the Sadowski formula with a thin plate model, a prediction model for the blasting vibration peak value on the high-end wall was established which can reflect the central amplification effect.Taking the blasting excavation of a grouting and draining tunnel at Shenxigou hydropower station as an example, the spatial distribution characteristics of blasting vibration on the high-end wall caused by the blasting excavation were analyzed, and the prediction model proposed was trained and tested using the measured blasting vibration data.Based on the safety control standard of blasting vibration, the safety of high-end wall of the underground powerhouse under the action of lateral blasting load was analyzed.The results show that when the blasting stress wave transmits to the high-end wall, it will be reflected.And the superposition of the reflected and the incident stress waves will aggravate the vibration effect on the high-end wall, leading to a very obvious phenomenon of center amplification.The key to ensure the safety of the high-end wall is to control the peak value of blasting vibration at its center, especially to strictly control the blasting vibration perpendicular to the high-end wall.The vibration amplitude should not be greater than 1.2 cm/s (for C20 labeled concrete powerhouse), and the tension failure of the high-end wall can be avoided.

关键词

地下厂房 / 爆破振动 / 放大效应 / 预测模型 / 安全分析

Key words

underground powerhouse / blasting vibration / amplification effect / prediction model / safety analysis

引用本文

导出引用
范勇1,2,崔先泽1,冷振东1,卢文波2,王峰1. 侧向爆破荷载作用下地下厂房高端墙振动预测与安全分析[J]. 振动与冲击, 2020, 39(22): 268-277
FAN Yong1,2, CUI Xianze1, LENG Zhendong1, LU Wenbo2, WANG Feng1. Vibration prediction and safety analysis of the high-end wall of a underground powerhouse under the action of lateral blasting load[J]. Journal of Vibration and Shock, 2020, 39(22): 268-277

参考文献

[1] 李海波, 蒋会军, 赵坚, 等. 动荷载作用下岩体工程安全的几个问题[J]. 岩石力学与工程学报, 2003, 22(11): 1887-1891.
LI Haibo, JIANG Huijun, ZHAO Jian, et al. Some problems about safty analysis of rock engineering under dynamic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1887-1891.
[2] 苏国韶, 宋咏春, 燕柳斌. 岩体爆破效应预测的一种新方法[J]. 岩石力学与工程学报, 2007, 26(S1): 3509-3509.
SU Guoshao, SONG Yongchun, YAN Liubin. A new method for forecasting of blasting effect in rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3509-3509.
[3] 易长平. 爆破振动对地下洞室的影响研究[D]. 武汉大学, 2005.
Yi Changping. The influence of blasting vibration on underground chambers[D]. WuHan University, 2005.
[4] MOW C C, CARRIER G F, and PERALTA L A. An Approximate procedure for the solution of a class of transient wave diffraction problems[J]. Journal of Applied Mechanics, 1966, 33: 168–172.
[5] PAO Y H. Elastic waves in solids[J]. Journal of Applied Mechanics, 1983, 50(4): 1152–1164.
[6] LIU D K, GAI B Z, and TAO G Y. Applications of the method of complex function to dynamic stress concentration[J]. Wave Motion, 1982, 4(3): 293–304.
[7] 姚强, 杨兴国, 陈兴泽, 等. 大型地下厂房开挖爆破振动动力响应数值模拟[J]. 振动与冲击, 2014, 33(6): 66-70.
YAO Qiang, YANG Xingguo, CHEN Xingze, et al. Numerical simulation of dynamic response of large underground powerhouse subjected to blasting vibration[J]. Journal of Vibration and Shock, 2014, 33(6): 66-70.
[8] 陈明, 卢文波, 易长平, 等. 大型地下厂房岩锚梁爆破安全控制标准研究[J]. 岩石力学与工程学报, 2006, 25(3): 499-504.
CHEN Ming, LU Wenbo, YI Changping, et al. Research on safety standard for rock anchor beam under blasting vibration in large underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 499-504.
[9] 刘冬, 高文学, 孙宝平, 等. 既有隧道扩建爆破振动数值模拟研究[J]. 岩土力学, 2016, 37(10): 3011-3016.
LIU Dong, GAO Wenxue, SUN Baoping, et al. Numerical simulation of blasting vibration on existing tunnel extension[J]. Rock and Soil Mechanics, 2016, 37(10): 3011-3016.
[10] 贾磊, 解咏平, 李慎奎. 爆破振动对邻近隧道衬砌安全的数值模拟分析[J]. 振动与冲击, 2015, 34(11): 173-177.
JIA Lei, XIE Yongping, LI Shenkui. Numerical simulation for impact of blasting vibration on nearby tunnel lining safety[J]. Journal of Vibration and Shock, 2015, 34(11): 173-177.
[11] 孙金山, 左昌群, 周传波, 等. 爆破应力波对邻近圆形隧道的动力扰动特征[J]. 振动与冲击, 2015, 34(18): 7-12.
SUN Jinshan, ZUO Changqun, ZHOU Chuanbo, et al. Dynamic disturbing on a round tunnel subjected to blasting seismic wave[J]. Journal of Vibration and Shock, 2015, 34(18): 7-12.
[12] 罗驰, 杨新安, 罗都颢, 等. 一种改进型隧道爆破模拟方法及其验证分析[J]. 振动与冲击, 2019, 38(17): 260-267.
LUO Chi, YANG Xinan, LUO Duhao, et al. An improved tunnel blast simulation method and its verification[J]. Journal of Vibration and Shock, 2019, 38(17): 260-267.
[13] 张黎明, 赵明生, 池恩安, 等. 爆破振动对地下管道影响试验及风险预测[J]. 振动与冲击, 2017, 36(16): 241-247.
ZHANG Liming, ZHAO Mingsheng, CHI Enan, et al. Experiments for effect of blasting vibration on underground pipeline and risk prediction[J]. Journal of Vibration and Shock, 2017, 36(16): 241-247.
[14] 邹新宽, 张继春, 潘强, 等. 隧道明挖段拉槽爆破时既有隧道结构动力响应特性[J]. 振动与冲击, 2015, 34(19): 203-207.
ZOU Xinkuan, ZHANG Jichun, PAN Qiang, et al. Dynamic response characteristics of an existing tunnel structure under cutting blast utilized in open excavation[J]. Journal of Vibration and Shock, 2015, 34(19):203-207.
[15] 范勇, 江璐, 卢文波, 等. 圆形隧洞爆破荷载与瞬态卸荷作用围岩应变能效应研究[J]. 岩石力学与工程学报, 2017, 36(8): 1855-1866.
FAN Yong, JIANG Lu, LU Wenbo, et al. Strain energy characteristics of surrounding rock under blasting load and transient release of geostress during excavation of circular tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1855-1866.
[16] 范勇, 卢文波, 杨建华, 等. 深埋洞室开挖瞬态卸荷诱发振动的衰减规律[J]. 岩土力学, 2015, 36(2): 541-549.
FAN Yong, LU Wenbo, YANG Jianhua, et al. Attenuation law of vibration induced by transient unloading during excavation of deep caverns[J]. Rock and Soil Mechanics, 2015, 36(2): 541-549.
[17] 范勇, 卢文波, 周宜红, 等. 一种高地应力条件下爆破开挖诱发振动峰值的预测模型[J]. 岩土力学, 2017, 38(4): 1082-1088.
FAN Yong, LU Wenbo, ZHOU Yihong, et al. A model for predicting vibration peak induced by blasting excavation under high in-situ stress[J]. Rock and Soil Mechanics, 2017, 38(4): 1082-1088.
[18] 范勇, 王奋, 卢文波, 等. 考虑地应力瞬态卸荷低频放大效应的深埋隧洞爆破开挖振动安全评估[J]. 岩石力学与工程学报, 2018, 37(s2): 4184-4197.
FAN Yong, WANG Fen, LU Wenbo, et al. Safety evaluation of deep tunnel blasting excavation vibration considering low-frequency amplification effect of transient unloading of in-situ stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 2018, 37(s2): 4184-4197.
[19] 郑永来, 杨林德, 李文艺, 等. 地下结构抗震[M]. 上海: 同济大学出版社, 2005.
ZHENG Yonglai, YANG Linde, LI Wenyi. Earthquake resistance of underground structures[M]. Shanghai: Tongji University Press, 2005.
[20] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 1982.
XU Zhilun. Concise course in elasticity[M]. Beijing: Higher Education Press, 1982.
[21] 林大超, 白春华, 张奇. 空气中爆炸时爆炸波的超压函数[J]. 爆炸与冲击, 2001, (1):41-46.
LING Dachao, BAI Chunhua, ZHANG Qi. Overpress functions of blast waves for explosions in air[J]. Explosion and Shock Waves, 2001, (1): 41-46.
[22] 黄炎. 弹性薄板理论[M]. 长沙: 国防科技大学出版社, 1992.
HUANG Yan. Theory of thin plate elasticity[M]. Changsha: National Defense Science and Technology University Press, 1992.
[23] 付跃升, 张庆明. 爆炸荷载作用下弹性薄板的动态响应[J]. 北京理工大学学报, 2007, 27(7): 572-575.
FU Yuesheng, ZHANG Qingming. Calculating dynamic parameters in elastic thin plates under blast loading[J]. Transactions of Beijing Institute of Technology, 2007, 27(7): 572-575.
[24] 中华人民共和国国家标准编写组. GB 6722—2014 爆破安全规程[S]. 北京:中国标准出版社,2015.
The National Standards Compilation Group of People’s Republic of China. GB 6722—2014 Safety regulations for blasting[S]. Beijing: Chinese Standard Press, 2015.
[25] 孙金山, 李正川, 陈明, 等. 《爆破安全规程》(GB 6722—2014)边坡岩体爆破振动速度安全允许值的理论探讨[J]. 岩石力学与工程学报, 2017, 36(12): 2971-2980.
SUN Jinshan, LI Zhengchuan, CHEN Ming, et al. Discussion on the safety threshold of blasting vibration velocity for slope rock masses in safety regulations for blasting (GB 6722—2014)[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2971-2980.
[26] Achenbach J D, Thau S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
[27] 郭秀琴, 方利成. 混凝土强度与应力波速相关性研究[J]. 铁道工程学报, 1997, 54(2): 88-98.
GUO Xiuqin, FANG Licheng. Research on relation between concrete strength and stress wave velocity[J]. Journal of railway engineering society, 1997, 54(2): 88-98.
[28] 程帅, 李守义, 司政, 等. 水电站厂房自振频率与影响因素的关联度分析[J]. 南水北调与水利科技, 2017, 15(3): 190-196.
CHENG Shuai, LI Shouyi, SI Zheng, et al. Relational grade analysis for influencing factors and the natural vibration frequency of hydropower house[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(3): 190-196.
[29] 柯国军, 代明, 雷林, 等. 混凝土阻尼比与劈裂抗拉强度的关系研究[J].武汉理工大学学报, 2009, 31(10): 52-55.
KE Guojun, DAI Ming, LEI Lin, et al. Research on the relations between concrete damping ratio and its splitting tensile strength[J]. Journal of Wuhan University of Technology, 2009, 31(10): 52-55.
[30] 张正宇, 张文煊, 吴新霞, 等. 现代水利水电工程爆破爆破[M]. 北京: 中国水利水电出版社, 2003: 337-353.
ZHANG Zhenyu, ZHANG Wenxuan, WU Xinxia, et al. Water resources and hydropower engineering blasting nowadays[M]. Beijing: China Water Power Press, 2003: 337-353.

PDF(2067 KB)

404

Accesses

0

Citation

Detail

段落导航
相关文章

/