大质量法在桥梁非一致弹塑性地震响应分析中的误差与改进

雷虎军1,2,黄炳坤1,刘伟1,黄江泽1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 28-34.

PDF(1613 KB)
PDF(1613 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 28-34.
论文

大质量法在桥梁非一致弹塑性地震响应分析中的误差与改进

  • 雷虎军1,2,黄炳坤1,刘伟1,黄江泽1
作者信息 +

Error analysis and improvement of the large mass method used in elastic-plastic response analysis of bridges subjected to non-uniform seismic

  • LEI Hujun1,2,HUANG Bingkun1,LIU Wei1,HUANG Jiangze1
Author information +
文章历史 +

摘要

针对大质量法计算大跨桥梁非一致弹塑性地震响应可能存在的误差,本文基于结构弹塑性分析理论,以某(56+100+56)m大跨连续刚构桥为工程背景,采用Midas Civil 2015建立弹塑性分析模型并利用大质量法处理模型边界行成非一致弹塑性分析模型,通过输入3条实测地震波计算结构的弹塑性地震响应,探讨了大质量法存在的误差并提出了修正方法。结果表明:大质量法直接用于求解桥梁结构的非一致弹塑性地震响应存在误差,会使求得的桥墩关键断面弯矩偏小,其根本原因是大质量法改变了结构的边界条件,使固定约束变成了滑动约束,导致求得的恒载弯矩偏小;通过在原大质量法中沿地震动输入方向添加刚度为K的弹性约束同时按照公式 修正输入地震波可实现大质量法的高精度修正,K可与大质量系数M取相同值;对于本文的计算条件,修正后的大质量法求得的桥墩关键断面弹塑性弯矩相对误差降低至0.135%。本文的研究成果可用于任意大跨结构的非一致弹塑性地震响应计算。

Abstract

Aiming at the error of the large mass method (LMM) used in elastic-plastic responses analysis of long-span bridges subjected to non-uniform seismic, a continuous rigid frame bridge with spans of (56+100+56) m was used as an engineering background.Based on the elastic-plastic theory, the non-uniform elastic-plastic analysis model set up by Midas Civil 2015 was utilized, in which the boundary conditions were modeled by the LMM.Then, the elastic-plastic seismic responses of the bridge were calculated by inputing three field measured seismic waves, the error of LMM was discussed, and the improved method for the LMM was proposed.The results show that there are errors resulted from the LMM used in elastic-plastic seismic responses analysis of long-span bridges and the bending moment at the key section of the bridge pier tends to be smaller.The fundamental reason is that the LMM changes the boundary conditions of the structure, it changes the fixed constraints into the sliding constraints, and results in less bending moment under constant load.By adding an elastic constraint with stiffness of K along the input direction of ground motion in the original LMM and modifying the input seismic wave according to the formula u??g+αu?g+ug, a high-precision correction of the LMM was realized, where K took the same value as the large-mass coefficient M.With the calculation condition in the paper, the relative error of the elastic-plastic bending moment at the key section of bridge pier is reduced to 0.135% by the modified LMM.The results can be used to calculate the non-uniform elastic-plastic seismic response of large span structures.

关键词

连续刚构桥 / 大质量法 / 一致激励法 / 弹塑性分析 / 恒载效应

Key words

continuous rigid frame bridge / large mass method(LMM) / uniform excitation method / elastic-plastic responses analysis / constant load effect

引用本文

导出引用
雷虎军1,2,黄炳坤1,刘伟1,黄江泽1. 大质量法在桥梁非一致弹塑性地震响应分析中的误差与改进[J]. 振动与冲击, 2020, 39(22): 28-34
LEI Hujun1,2,HUANG Bingkun1,LIU Wei1,HUANG Jiangze1. Error analysis and improvement of the large mass method used in elastic-plastic response analysis of bridges subjected to non-uniform seismic[J]. Journal of Vibration and Shock, 2020, 39(22): 28-34

参考文献

[1] Zhao L, Hao H, Bi K, et al. Numerical Study of the Seismic Responses of Precast Segmental Column Bridge under Spatially Varying Ground Motions[J]. Journal of Bridge Engineering. 2018, 23(12): 4018096.
[2] Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion [J]. Earthquake engineering & structural dynamics, 2002, 31(6): 1325-1345.
[3] Wang J, Carr A J, Cooke N, et al. The response of a 344 m long bridge to non-uniform earthquake ground motions [J]. Engineering Structures , 2009, 31(11): 2554-2567.
[4] 张超, 巫生平. 非一致激励对三塔自锚式悬索桥地震响应的影响[J]. 振动与冲击, 2015, 34(2): 197-203.
Zhang Chao, Wu Shengping. Effects of non-uniform excitation on seismic responses of a three-tower self-anchored suspension bridge [J]. Journal of Vibration and Shock, 2015, 34(2): 197-203.
[5] 杨海洋, 钟铁毅, 夏禾. 铁路悬索桥纵向非一致激励地震响应分析[J]. 振动与冲击, 2014, 33(22): 157-163.
Yang Haiyang, Zhong Tieyi, Xia He. Seismic responses analysis of a railway suspension bridge under longitudinal non-uniform excitations [J]. Journal of Vibration and Shock, 2014, 33(22): 157-163.
[6] 李吉涛, 杨庆山, 刘阳冰. 多点地震激励下大跨连续钢构桥易损性分析[J]. 振动与冲击, 2013, 32(5): 75-80.
Li Jitao, Yang Qingshan, Liu Yangbing. Fragility analysis of long span continuous rigid frame bridge under multi-support excitations [J]. Journal of Vibration and Shock, 2013, 32(5): 75-80.
[7] Léger P, Idé I M, Paultre P. Multiple-support seismic analysis of large structures[J]. Computers & Structures. 1990, 36(6): 1153-1158.
[8] 王波, 张海龙, 武修雄, 等. 基于大质量法的高墩大跨连续刚构桥地震时程反应分析[J]. 桥梁建设, 2006(5): 17-20.
Wang Bo, Zhang Hailong, Wu Xiuxiong, et al. Analysis of seismic time history response of high rise pier and long span continuous rigid frame bridge based on great mass method [J]. Bridge Construction, 2006(5): 17-20.
[9] Kim Y, Myung J. A study on large mass method for dynamic problem of multiple degree-of-freedom system excited by ground acceleration time history? [J]. Journal of Mechanical Science and Technology, 2014, 28(1): 25-41.
[10] 李小珍, 雷虎军. 基于多点激励的刚构-连续组合梁桥行波效应分析[J]. 桥梁建设, 2012, 42(6): 33-38.
Li Xiaozhen, Lei Hujun. Analysis of traveling wave effect of hybrid bridge of rigid-frame and continuous girder based on multi-support excitation [J]. Bridge Construction, 2012, 42(6): 33-38.
[11] 罗超, 楼梦麟, 桂国庆. 大跨度结构多点地震反应计算方法的比较[J]. 同济大学学报(自然科学版), 2015, 43(1): 8-15.
Luo Chao, Lou Menglin, Gui Guoqing. Comparison for calculation methods of long-span structure under multi-support seismic excitation [J]. Journal of Tongji University(Natural Science), 2015, 43(1): 8-15.
[12] 于海丰, 张耀春. 地震动输入方法研究[J]. 工程力学, 2009, 26(S1): 1-6+19.
Yu Haifeng, Zhang Yaochun. Discussion on earthquake input method [J]. Engineering Mechanics, 2009, 26(S1): 1-6+19.
[13] 李小珍, 刘桢杰, 雷虎军, 等. 行波效应对矮塔斜拉桥弹塑性地震响应的影响[J]. 铁道工程学报, 2015, 32(11): 49-54.
Li Xiaozhen, Liu Zhenjie, Lei Hujun, et al. Effect of traveling wave on elastic-plastic seismic response of low-pylon cable-stayed bridge [J]. Journal of Railway Engineering Society, 2015, 32(11): 49-54.
[14] Kent D C, Park R. Flexural members with confined concrete [J]. Journal of the Structural Division, 1971, 97(ST7): 1969-1990.
[15] Scott H D, Park R, Priestly M J N. Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates [J]. Journal of the American Concrete Institute, 1982, 79(1): 13-27.
[16] 周国良, 李小军, 刘必灯, 等. 大质量法在多点激励分析中的应用、误差分析与改进[J]. 工程力学, 2011, 28(1): 48-54.
Zhou Guoliang, Li Xiaojun, Liu Bideng et al. Error analysis and improvements of large mass method used in multi-support seismic excitation analysis [J]. Engineering Mechanics, 2011, 28(1): 48-54.
[17] GB 50011-2010建筑抗震设计规范[S]. (2016年版) 北京: 中国建筑工业出版社, 2016.
GB 50011-2010 Code for seismic design of buildings [S]. (2016 Edition) Beijin: China building industry press, 2016.

PDF(1613 KB)

Accesses

Citation

Detail

段落导航
相关文章

/