线性结构基于Kanai-Tajimi谱的随机地震动响应分析的新解法

葛新广1,2,龚景海1,李创第1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 60-66.

PDF(755 KB)
PDF(755 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 60-66.
论文

线性结构基于Kanai-Tajimi谱的随机地震动响应分析的新解法

  • 葛新广1,2,龚景海1,李创第1,2
作者信息 +

Novel method for the random seismic response analysis of linear structures subjected to Kanai-Tajimi excitation

  • GE Xinguang1,2,GONG Jinghai1,LI Chuangdi1,2
Author information +
文章历史 +

摘要

针对当前分析Kanai-Tajimi谱地震动作用下结构分析比较繁杂的问题,提出了计算单自由度结构响应的简明解法。基于Kanai-Tajimi谱的滤波振动方程,将地面运动表示成白噪声激励,并与结构的运动方程组成非经典阻尼结构的地震动系统;运用复模态方法获得结构相对位移、相对速度基于白噪声激励的协方差的解析表达式;利用白噪声激励的谱矩与协方差的简明关系,获得单自由线性结构响应的谱矩简明解析表达式。最后,基于首超破坏准则和Markov分布假定,获得结构的动力可靠度。通过算例,验证了本文方法的正确性和简洁性。

Abstract

In view of the operational complexity of current methods for analyzing responses of structures excited by the Kanai-Tajimi spectrum earthquake, a novel and simple method for calculating the structural response of a single-degree-of-freedom(SDOF) system was proposed.The ground motion of Kanai-Tajimi spectrum was expressed as white noise excitation by using a filter vibration equation, so the non-classical damped structural system was composed of the SDOF dynamic equation and the filter vibration equation.Then, the analytic expressions for the covariance of relative displacement and relative velocity of the structure under white noise excitation were derived by the complex mode method.Considering the simple relationship between the spectral moment and covariance of the white noise excitation, a concise analytical expression of spectral moments for the response of SDOF structures subjected to Kanai-Tajimi excitation was obtained.Finally, based on the first-pass failure criterion and Markov distribution assumption, the dynamic reliability of the structure was achieved.The correctness and simplicity of the proposed method were verified by an example.

关键词

Kanai-Tajimi谱 / 白噪声激励谱 / 谱矩 / 复模态法 / 动力可靠度 / Markov分布假设

Key words

Kanai-Tajimi spectrum / white noise excitation spectrum / spectral moment / complex mode method / dynamic reliability / Markov distribution

引用本文

导出引用
葛新广1,2,龚景海1,李创第1,2. 线性结构基于Kanai-Tajimi谱的随机地震动响应分析的新解法[J]. 振动与冲击, 2020, 39(22): 60-66
GE Xinguang1,2,GONG Jinghai1,LI Chuangdi1,2. Novel method for the random seismic response analysis of linear structures subjected to Kanai-Tajimi excitation[J]. Journal of Vibration and Shock, 2020, 39(22): 60-66

参考文献

1. 胡聿贤. 地震工程学(第二版)[M]. 北京: 地震出版社, 2006.
HU Yuxian. Seismic engineering (2nd Edition) [M]. Beijing: Seismological Press, 2006.
2. 周锡元, 吴育才. 工程抗震的新发展[M]. 北京: 清华大学出版社, 2002.
ZHOU Xiyuan, Wu Yucai. New development of seismic engineering [M]. Beijing: Tsinghua University Press, 2002.
3. Clough R.W., Penzien  J.. Dynamics of structures.2nd edition.[M]. New York: McGraw Hill, 1993.
4. Crandall S.H.. Random vibration[M]. New York Technology Press of MIT;John Wiley & Sons Inc, 1958.
5. Grigorin M. Soong T. T. Random vibration mechanical and structural systems[M]. Englewood Cliffs: Prentice Hall, 1993.
6. Li J., Chen J.B.. Stochastic dynamics of structures[M]. Singapore: John Wiley & Sons Inc  2009.
7. 方同, 张天舒. 演变随机激励下线性结构的非平稳响应特性[J]. 振动工程学报,1989,(03):36-41.
FANG Tong, Zhang Tianshu. Nonstationary response characteristics of linear structures under evolutionary random excitation [J].Journal of Vibration Engineering, 1989, (03): 36-41.
8. 何军. 非平稳随机激励下系统首次穿越概率的近似解法[J]. 应用数学和力学,2009,30(02):245-252.
HE Jun. Approximate solution of first passage probability of systems under nonstationary random excitation [J]. Applied Mathematics and Mechanics, 2009, 30 (02): 245-252.
9. 方同. 工程随机振动[M]. 北京: 国防工业出版社, 1995.
Fang Tong. Engineering Random Vibration [M]. Beijing: National Defense Industry Press, 1995.
10. Housner G W. Characteristics of strong motion earthquakes[J]. BSSA,1947,37:19-31.
11. Kasnai K. Semi-empirical formula for the seismic characteristics of the ground motion[J]. Bulletin Of The Earthquake Research Institute,University Of Tokyo,1957,35(2):308-325.
12. Tajimi H. A statistical method of determining the maximum response of a building structure during an earthquake[C]//Proceeding of 2nd World Conference on Earthquake Engineering.Tokyo:WCEE, 1960.
13. 金家合, 胡聿贤, 周锡元. 关于“弹性体系在平稳和平稳化地面运动下的反应”一文中的探讨[R]. 北京: 北京科学出版社; 1965.
JIN Jiahe, Hu Yixian, Zhou Xiyuan. Discussion on the "Response of Elastic Systems to Smooth and Steady Ground Motion" [R]. Beijing: Beijing Science Press; 1965.
14. 白国良, 朱丽华. 基于现行抗震规范的Kanai-Tajimi模型参数研究[J]. 世界地震工程,2004,(03):114-118.
BAI Guoliang, Zhu Lihua. Study on parameters of kanai-tajimi model based on current seismic codes [J]. World Earthquake Engineering, 2004, (03): 114-118.
15. Ghodrati Amiri G., Raeisi Dehkordoi M., Bagheri A.,et al. Genaration Of Artificial Earthquake Records With A Nonstationary Kanai-Tajimi Model And Wavelet Transform[C]// Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering.Nanjing: Southeast University,2005.
16. 邹万杰, 马媛, 李创第等. 带支撑Maxwell阻尼器多层隔震结构的随机地震响应分析[J]. 振动与冲击,2017,36(21):213-219.
ZOU Wanjie, Ma Yuan, Li Chuangdi,et al. Random Seismic Response Analysis of Multilayer Isolated Structures with Supported Maxwell Dampers [J]. Journal of Vibration and Shock, 2017, 36 (21): 213-219.
17. 林家浩, 张亚辉, 赵岩. 虚拟激励法在国内外工程界的应用回顾与展望[J]. 应用数学和力学,2017,38(01):1-32.
LIN Jiahao, Zhang Yahui, Zhao Yan. Review and prospect of application of pseudo excitation method in engineering field at home and abroad [J].Applied Mathematics and Mechanics, 2017,38(01): 1-32.
18. 林家浩. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.
LIN Jiahao. Pseudo excitation method for random vibration [M]. Beijing: Science Press, 2004.
19. 徐瑞, 苏成. 结构非平稳随机响应分析的快速虚拟激励法[J]. 计算力学学报,2010,27(05):822-827.
XU Rui, Su Cheng. Fast pseudo excitation method for structural nonstationary random response analysis [J]. Chinese Journal of Computational Mechanics, 2010, 27 (05): 822-827.
20. 廖伯瑜, 周新民, 君志宏. 现代机械动力学及其工程应用:  建模、分析、仿真、修改、控制、优化[M]. 北京: 机械工业出版社, 2003.
LIAO Boyu, Zhou Xinmin, Jun Zhihong. Modern mechanical dynamics and its engineering applications: modeling, analysis, simulation, modification, control and optimization [M]. Beijing: Machinery Industry Press, 2003.
21. 李创第, 张翊, 葛新广. 单自由度Maxwell阻尼器耗能结构基于频响函数谱矩的等效阻尼[J]. 广西大学学报(自然科学版),2019,44(01):41-51.
LI Chuangdi, Zhang Yi, Ge Xinguang.Equivalent damping of energy dissipating sdof structure with maxwell dampers based on spectral moment of frequency response function [J]. Journal of Guangxi University (Natural Science Edition), 2019, 44 (01): 41-51.
22. 李创第, 柏大炼, 葛新广等. 基于C-P谱分析设置支撑的广义Maxwell阻尼器系统完全非平稳地震响应[J]. 桂林理工大学学报,2018,(03):480-487.
LI Chuangdi, Bai Dalian, Ge Xinguang et al. Seismic response of generalized maxwell damper system with barce subjected to fully nonstationary C-P spectrum [J]. Journal of Guilin University of Technology, 2018, (03): 480-487.
23. 李创第, 李暾, 尉宵腾, 葛新广, 邹万杰. Maxwell阻尼耗能结构非平稳地震响应解析分析[J]. 振动与冲击,2016,35(19):172-180.
LI Chuangdi, Li Tun, Wei Xiaoteng, et al. Analytical analysis for non-stationary seismic response of energy dissipation structure with maxwell dampers [J]. Journal of Vibration and Shock, 2016, 35 (19): 172-180.
24. 李创第, 丁晓华, 陈俊忠等. 基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J]. 振动与冲击,2006,(05):162-165+199.
LI Chuangdi, Ding Xiaohua, Chen Junzhong,et al. Complex modal method for random seismic response analysis of base-isolated structures based on clough-penzien spectrum [J]. Journal of Vibration and Shock, 2006, (05): 162-165+199.
25. 李创第, 陈俊忠, 黄东梅等. 多自由度“加层”结构地震作用取值的复模态法[J]. 哈尔滨工业大学学报,2009,41(04):201-203.
LI Chuangdi, Chen Junzhong, Huang Dongmei,et al. Complex modal method for evaluating seismic action of multi-degree-of-freedom "story-adding" structures [J]. Journal of Harbin Institute of Technology, 2009, 41 (04): 201-203.
26. 孙攀旭, 杨红, 吴加峰等. 基于频率相关黏性阻尼模型的复模态叠加法[J]. 力学学报,2018,50(05):1185-1197.
SUN Panxu, Yang Hong, Wu Jiafeng,et al. Complex modal superposition method based on frequency-dependent viscous damping model [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018,50 (05): 1185-1197.
27. 曹宏 李桂青, 李秋胜. 结构动力可靠性理论及其应用[M]. 北京: 地震出版社, 1993.
CAO Hong, Li Guiqing, Li Qiusheng. Structural dynamic reliability theory and its application [M]. Beijing: Seismic Press, 1993.
28. Crandall S.H.. First-crossing probabilities of the linear oscillator[J]. Journal of Sound and Vibration,1970,12(3):285-299.
29.Vanmarcke E. H.. Properties of spectral moments with applications to random vibration[J]. Journal of Engineering Mechanics @ASCE, 1972(198):425~446.

PDF(755 KB)

Accesses

Citation

Detail

段落导航
相关文章

/