多点耦合系统中与耦合点有关的频响函数测量

廖旭晖1,2,李舜酩2,戴旭东1,赵景波1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 76-81.

PDF(1551 KB)
PDF(1551 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (22) : 76-81.
论文

多点耦合系统中与耦合点有关的频响函数测量

  • 廖旭晖1,2,李舜酩2,戴旭东1,赵景波1
作者信息 +

Measurement of frequency response functions related to coupling points in multipoint coupled systems

  • LIAO Xuhui1,2,LI Shunming2,DAI Xudong1,ZHAO Jingbo1
Author information +
文章历史 +

摘要

在多点耦合系统的振动分析中经常需要测量与耦合点有关的频响函数。由于耦合点的不易测量的性质,此类频响函数的测量工作往往十分棘手。针对此类问题,进行了详细的分析和探讨,提出了完整的关于耦合点有关的频响函数测量的策略。依据激励点和响应点是否是耦合点将耦合点有关的频响函数分成3种类型:(I)响应点是耦合点;(II)激励点是耦合点;(III)响应点和激励点都是耦合点。首先提出了第I类和第II类频响函数的测试策略,然后基于机械系统中的诺顿定理将第III类频响函数表示成第I类和第II类频响函数。数值模型和实验均验证了所提出的方法的正确性。

Abstract

Frequency response functions (FRFs) related to coupling points usually need to be measured in the vibration analysis of multi-point coupled systems.Because of the inaccessible property of coupling points, the measurement of this kind of FRF is often very difficult.Aiming at this, detailed analyses and discussions were made in the paper.A complete strategy for measuring the FRFs related to coupling points was proposed.According to whether the excitation point and the response point are coupling points or not, the FRFs related to coupling points were divided into three types: (Ⅰ)The response point belongs to the coupling points.(Ⅱ)The excitation point belongs to the coupling points.(Ⅲ)Both the response point and the excitation point belong to the coupled points.First, the testing strategies of Class I FRFs and Class II FRFs were proposed.Then, according to the Norton Theorem in mechanical systems, it was proved that the Class III FRFs could be expressed as Class I and Class II FRFs.The correctness of the proposed method was verified by a numerical model and an experiment.

关键词

多点耦合系统 / 耦合点 / 频响函数 / 振动测量

Key words

multipoint coupled system / coupling point / frequency response function(FRF) / vibration measurement

引用本文

导出引用
廖旭晖1,2,李舜酩2,戴旭东1,赵景波1. 多点耦合系统中与耦合点有关的频响函数测量[J]. 振动与冲击, 2020, 39(22): 76-81
LIAO Xuhui1,2,LI Shunming2,DAI Xudong1,ZHAO Jingbo1. Measurement of frequency response functions related to coupling points in multipoint coupled systems[J]. Journal of Vibration and Shock, 2020, 39(22): 76-81

参考文献

[1] Plunt J, Finding and fixing vehicle NVH problems with transfer path analysis[J], Sound and Vibration, 2005, 39(11): 12–16.
[2] Auweraer H V, Mas P, Dom S, A.Vecchio, et al. Transfer Path Analysis in the Critical Path of Vehicle Refinement: The Role of Fast, Hybrid and operational Path Analysis[C], SAE Technical Paper, 2007.
[3] Seijs M V V D, Klerk D D, Rixen D J. General framework for transfer path analysis: History, theory and classification of techniques[J]. Mechanical Systems and Signal Processing, 2015, 68-69: 217-244.
[4] Klerk D D, Dynamic response characterization of complex systems through operational identification and dynamic substructuring (Ph.D. thesis), Delft University of Technology, The Netherlands, 2009.
[5] Klerk D D, Rixen D J, Voormeeren S N. General Framework for Dynamic Substructuring: History, Review and Classification of Techniques[J]. AIAA Journal, 2008, 46(5): 1169-1181.
[6] Liao X , Li S , Liao L , et al. Virtual decoupling method: a novel method to obtain the FRFs of subsystems[J]. Archive of Applied Mechanics, 2017, 87: 1453-1463.
[7] 廖旭晖, 李舜酩, 孟浩东, 等. 传递路径分析中计算子系统频响函数的方法[J]. 振动工程学报, 2018, 31(4): 681-687.
LIAO Xu-hui, LI Shun-ming, MENG Hao-dong, et al. An approach to calculate subsystems’ frequency response functions in transfer path analysis. Journal of vibration engineering, , 2018, 31(4): 681-687.
[8] Keersmaekers L, Mertens L, Penne R, et al. Decoupling of mechanical systems based on in-situ frequency response functions: The link-preserving, decoupling method[J]. Mechanical Systems and Signal Processing, 2015, 58-59: 340-354.
[9] Wang Z , Zhu P , Liu Z . Relationships between the decoupled and coupled transfer functions: Theoretical studies and experimental validation[J]. Mechanical Systems and Signal Processing, 2018, 98: 936-950.
[10] Jetmundsen B, Bielawa R L, Flannelly W G. Generalized Frequency Domain Substructure Synthesis[J]. Journal of the American Helicopter Society, 1988, 33(1): 55-64.
[11] Voormeeren S N, Rixen D J. A family of substructure decoupling techniques based on a dual assembly approach[J]. Mechanical Systems and Signal Processing, 2012, 27: 379-396.
[12] D'Ambrogio W, Fregolent A. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain[J]. Mechanical Systems and Signal Processing, 2014, 45(2): 360-377.
[13] 廖旭晖, 廖连莹, 孟浩东. 戴维南—诺顿定理在机械振动系统分析中的应用[J]. 科技创业月刊, 2015, 28(23): 144-145.
LIAO Xu-hui, LIAO Lian-ying, MENG Hao-dong. Application of Thevenin-Norton Theorem in Mechanical Vibration System Analysis, Pioneering with Science & Technology Monthly (in Chinese), 2015, 23, 144-145.
[14] 韩旭, 郭永进, 朱平, 等. 基于诺顿等效系统功率流计算的多维振动传递特性研究[J]. 振动与冲击, 2007, 26(5): 44-48.
HAN Xu, GUO Yong-jin, ZHU Ping, et al. Study on multi-dimensional vibration transmission performance based on vibration power flow calculation with Norton equivalent system [J]. Journal of vibration and shock, 2008, 26(5): 44-48.
[15] Klerk D D, Rixen D J. Component transfer path analysis method with compensation for test bench dynamics[J]. Mechanical Systems and Signal Processing, 2010, 24(6): 1693-1710.
[16] Shin T, Kim Y S, An K, et al. Transfer path analysis of rumbling noise in a passenger car based on in-situ blocked force measurement[J]. Applied Acoustics, 2019, 149, 1-14.
[17] Lennström D, Wullens F, Olsson M, et al. Validation of the blocked force method for various boundary conditions for automotive source characterization[J]. Applied Acoustics, 2016, 102: 108-119.

PDF(1551 KB)

332

Accesses

0

Citation

Detail

段落导航
相关文章

/