传统的随机子空间参数识别方法难以确定合理的系统阶次,参数识别结果易受到环境噪声的干扰。稳定图方法在识别结构参数时依赖于主观判断,不能自动识别。针对以上问题,本文提出区间摄动和双层模糊聚类算法对基于随机子空间识别得到的模态参数进行自适应辨别。以高阶系统识别的固有频率为中心频率进行±2%的摄动,并将该摄动区间内识别所得的各阶频率作为同一阶频率,结合稳定图法对固有频率进行自动识别;采用双层模糊聚类算法对识别离散性较大的阻尼比进行聚类,结合稳定图法自动识别阻尼比。基于岸桥监测数据的工程实例模态参数识别结果表明,该方法能够有效剔除虚假模态,提高参数识别效率,固有频率和阻尼比的自动识别效果较好。
Abstract
The traditional stochastic subspace identification method is difficult to determine the reasonable order of system, the results of parametric identification are easy to be disturbed by environmental noise.The stability diagram method relying on subjective judgment can not automatically identify structural parameters.Here, aiming at above problems, interval perturbation and double-layer fuzzy clustering algorithm were proposed to identify modal parameters automatically based on stochastic subspace identification.A natural frequency identified of a high-order system was taken as the central frequency to do perturbation by ±2%, and natural frequencies identified within this perturbation interval were regarded as the same order frequency.Natural frequencies were automatically identified by combining with the stability diagram method.The double-layer fuzzy clustering algorithm was used to cluster damping ratios with larger discreteness, and damping ratios were automatically identified by combining with the stability diagram method.The results of modal parametric identification of engineering examples based on monitoring data of quay crane showed that the proposed method can effectively eliminate false modes, improve the efficiency of parametric identification, and achieve better automatic identification of natural frequencies and damping ratios.
关键词
随机子空间法 /
稳定图 /
区间摄动 /
模糊聚类 /
参数识别
{{custom_keyword}} /
Key words
stochastic subspace method /
stability diagram /
interval perturbation /
fuzzy clustering /
parametric identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 夏遵平, 王彤. 计及噪声激励的模态参数识别方法[J]. 振动工程学报, 2018,31(03):374-381.
XIA Zunping, WANG Tong. Modal parameters identification method considering noise excitation [J]. Journal of Vibration Engineering, 2018, 31 (03): 374-381.
[2] 刘宇飞,辛克贵,樊健生,崔定宇.环境激励下结构模态参数识别方法综述[J].工程力学,2014,31(04):46-53.
LIU Yufei, XIN Kegui, FAN Jiansheng, CUI Dingyu. A review of structural modal parameters identification method under environmental excitation[J].Engineering Mechanics, 2014, 31 (04): 46-53.
[3] 肖祥, 任伟新, 戴恩彬. 基于数据驱动的应变模态参数随机子空间识别法[J].中南大学学报(自然科学版), 2012,43(09):3601-3608.
XIAO Xiang, REN Weixin, DAI Enbin. Identification of strain modal parameters based on data-driven stochastic subspace identification method [J]. Journal of Central South University (Natural Science Edition), 2012, 43 (09): 3601-3608.
[4] 李扬, 周丽, 杨秉才.飞机紊流激励响应的模态参数识别[J].振动工程学报, 2016,29(06):963-970.
LI Yang, ZHOU Li, YANG Bingcai. Identification of modal parameters of turbulent excitation response of aircraft [J]. Journal of Vibration Engineering, 2016, 29 (06): 963-970.
[5] Xie Y, Liu P, Cai G P. Modal parameter identification of flexible spacecraft using the covariance-driven stochastic subspace identification (SSI-COV) method[J]. Acta Mechanica Sinica, 2016, 32(4):710-719.
[6] Carden E P, Brownjohn J M W. Fuzzy clustering of stability diagrams for vibration-based structural health monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 23(5):360-372.
[7] 宋明亮, 苏亮, 董石麟, 等. 模态参数自动识别的虚假模态剔除方法综述[J]. 振动与冲击, 2017,36(13):1-10.
SONG Mingliang, SU Liang, DONG Shilin, etal. Summary of false modal elimination methods for automatic identification of modal parameters[J]. Journal of Vibration and Shock, 2017, 36 (13): 1-10
[8] 樊江玲, 张志谊, 华宏星.一种改进的随机子空间辨识方法的稳定图[J].振动与冲击, 2010,29(02):31-34.
FAN Jiangling, ZHANG Zhiyi, HUA Hongxing. Stability diagram of an improved stochastic subspace identification method[J]. Journal of Vibration and Shock, 2010, 29 (02): 31-34+219.
[9] QIN Shiqiang, KANG Juntao, WANG Qiuping. Operational modal analysis based on subspace algorithm with an improved stabilization diagram method[J]. Shock and Vibration, 2016, 2016:1-10.
[10] 常军, 张启伟, 孙利民.稳定图方法在随机子空间识别模态参数中的应用[J].工程力学, 2007(02):39-44.
CHANG jun, ZHANG Qiwei, SUN Limin. Application of stability diagram method in modal parameters of stochastic subspace identification[J]. Engineering Mechanics, 2007 (02): 39-44.
[11] 吴春利, 刘寒冰, 王静. 模糊聚类算法稳定图应用于桥梁结构参数识别[J].振动与冲击, 2013,32(04):121-126.
WU Chunli, LIU Hanbing, WANG Jing. Fuzzy clustering algorithm and stability diagram applied to bridge structural parameters identification [J]. Journal of Vibration and Shock, 2013, 32 (04): 121-126.
[12] Scionti M, Lanslots J P. Stabilisation diagrams: Pole identification using fuzzy clustering techniques[J]. Advances in Engineering Software, 2005,36(11):768-779.
[13] Duin J T , Juszczak P , Tax D M J , et al. Feature Scaling in Support Vector Data Description[J]. Machine Learning, 2007, 54(1):45-66.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}