基于无线式内窥镜应用的激振胶囊非线性动力学行为研究

廖茂林

振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 279-286.

PDF(2877 KB)
PDF(2877 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 279-286.
论文

基于无线式内窥镜应用的激振胶囊非线性动力学行为研究

  • 廖茂林
作者信息 +

Nonlinear dynamic behavior of impact capsule oscillator based on wireless endoscope application

  • LIAO Maolin
Author information +
文章历史 +

摘要

以引入激振冲击结构改进胶囊内窥镜为目的,对具有单边和双边弹性约束的激振胶囊进行了对比研究。通过数值模拟讨论了频率比和振幅比2项激振参数,以及质量比和刚度比2项结构参数对激振胶囊动力学行为演化规律的影响。通过研究发现,单边约束的激振胶囊的推进速度更快,并且其在一周期一次碰撞振动状态下的推进效率高于其他振动状态。而双边约束的激振胶囊的推进速度相对较慢,但双边约束激振胶囊的特点在于能够更好地通过调控冲击振子与两侧弹簧的不同碰撞次数来实现激振胶囊的向前和向后的双向移动,而这为实现对消化道重点区域的往复回看提供了可能性。综上所述,本文的研究成果对激振胶囊的结构设计和振动控制具有指导意义。

Abstract

Here, to improve dynamic behavior of a capsule endoscope via introducing an impact oscillator structure, dynamic behaviors of an impact capsule oscillator with unilateral and bilateral elastic constraints were studied contrastively.The effects of two excitation parameters of frequency ratio and amplitude one and two structure parameters of mass ratio and stiffness one on dynamic behavior evolution laws of the impact capsule oscillator were investigated with numerical simulation.The study results showed that the capsule with unilateral constraint moves faster than the one with bilateral constraints does, and its propulsion efficiency under one-period one impact-vibration state is higher than that under other impact-vibration states; the capsule with bilateral constraints has lower propulsion speed but it can realize the two way movement forward and backward via adjusting the number of impact between the impact capsule oscillator and spring constraints at both left and right sides; this bidirectional movement provides the possibility of reciprocating looking back to key areas of human digestive tract; the study results have guiding significance for the structural design and vibration control of the impact capsule oscillator.

关键词

动力学 / 非线性 / 冲击振子 / 激振胶囊 / 推进速度

Key words

dynamics / nonlinear / impact oscillator / impact capsule oscillator / propulsion speed

引用本文

导出引用
廖茂林. 基于无线式内窥镜应用的激振胶囊非线性动力学行为研究[J]. 振动与冲击, 2020, 39(23): 279-286
LIAO Maolin. Nonlinear dynamic behavior of impact capsule oscillator based on wireless endoscope application[J]. Journal of Vibration and Shock, 2020, 39(23): 279-286

参考文献

[1] 冯桂建, 刘玉兰. 胶囊内镜的发展和应用[J]. 中国消化内镜, 2007, 02: 16-21.
FENG Gui-jian, LIU Yu-lan. Development and application of  capsule endoscopy[J]. Zhongguo Xiaohua Neijing, 2007, 02: 16-21.
[2] Lee, Y.Y., Erdogan, A., Rao, S.S. How to assess regional and whole gut transit time with wireless motility capsule [J].  Journal of Neurogastroenterology and Motility,2014, 20(2): 265–270.
[3] Carpi, F., Kastelein, N., Talcott, M., et al. Magnetically controllable gastrointestinal steering of video capsules [J]. IEEE Transactions on Bio-medical Engineering,2011, 58(2): 231–234.
[4] Keller, J., Fibbe, C., Volke, F., et al. Remote magnetic control of a wireless capsule endoscope in the esophagus is safe and feasible: results of a randomized, clinical trial in healthy volunteers [J]. Gastrointestinal Endoscopy,2010, 72(5): 941–946.
[5] 邹文斌, 廖专, 李兆申. 磁控胶囊胃镜研发及临床应用进展[J]. 中国实用内科志, 2018, 38(04): 265-270.
ZOU Wen-bin, LIAO Zhuan, LI Zhao-shen. Development and clinical application of magnetic control capsule gastroscope [J], Chinese Journal of Practical Internal Medicine. 2018,38(04):265-270.
[6] 迟冬祥, 颜国正, 林良明. 基于蚯蚓运动原理的肠道检查微小机器人内窥镜系统[J]. 机器人, 2002, 03: 222-227+238.
CHI Dong-xiang, YAN Guo-zheng, LIN Liang-ming. A novel miniature robotic endoscope design for intestinal inspection based on earthworm [J]. Robot, 2002, 03: 222-227+238.
[7] 李传国, 颜国正, 王坤东, 等. 主动可控内窥镜胶囊机器人研究[J]. 测控技术, 2010, 29(04): 90-93+96.
LI Chuan-guo, YANGuo-zheng, WANG Kun-dong, et al. Development of micro-robot for the active exploration of the gastrointestinal track [J]. Measurement & Control Technology, 2010, 29(04): 90-93+96.
[8] 陈柏, 贺惠农, 周银生. 医用内窥镜系统体内驱动方式的研究[J]. 润滑与密封, 2002, 05: 57-59.
CHEN Bai, HE Hui-nong, ZHOU Yin-sheng. Study on the Drive Mode of the System of the Endoscope [J]. Lubrication Engineering, 2002, 05:57-59.
[9] Zahn, J.D., Talbot, N.H., Liepmann, D., et al. Microfabricated polysilicon microneedles for minimally invasive biomedical devices [J]. Biomedical Microdevices ,2000, 2(4):295–303.
[10] Tognarelli, S., Quaglia, C., Valdastri, P., et al. Innovative stopping mechanism for esophageal wireless capsular endoscopy [J]. Procedia Chem. 2009, 1(1):485–488.
[11] Quirini, M., Menciassi, A., Scapellato, S., et al. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract [J]. IEEE/ASME Transactions on Mechatronics ,2008, 13(2):169–179.
[12] Gorini, S., Quirini, M., Menciassi, A., et al. A novel SMA-based actuator for a legged endoscopic capsule [C]. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006: 443–449.
[13] Sliker, L.J., Kern, M.D., Schoen, J.A., et al. Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads [J]. Surg. Endosc. 2012, 26(10): 2862–2869.
[14] Valdastri, P., Webster III, R.J., Quaglia, C., et al. A new mechanism for meso-scale legged locomotion in compliant tubular environments [J]. IEEE Transactions on Robotics, 2009, 25(5): 1047–1057.
[15] Jiang, Z., Xu, J. Analysis of worm-like locomotion driven by the sine-squared strain wave in a linear viscous medium [J]. Mechanics Research Communications,2017, 85: 33–44.
[16] Sahin Y., Yaşar E. Development of an obstacle-avoidance algorithm for snake-like robots[J]. Measurement, 2015, 73:68-73
[17] Zhan, X., Xu, J., Fang, H. Planar locomotion of a vibration driven system with two internal masses [J]. Applied Mathematical Modelling,2016, 40: 871–885.
[18] Pavlovskaia E., Hendry D.C., Wiercigroch M. Modelling of high frequency vibro-impact drilling [J]. International Journal of Mechanical Sciences, 2005, 91: 110–19.
[19] Liu,Y.,Wiercigroch,M., Pavlovskaia, E., et al. Modelling of a vibro-impact capsule system [J]. International Journal of Mechanical Sciences, 2013, 66: 2–11.
[20] Liu, Y., Pavlovskaia, E., Wiercigroch, M. Vibro-impact responses of capsule system with various friction models [J]. International Journal of Mechanical Sciences, 2013, 72: 39–54.
[21] Liu, Y., Pavlovskaia, E., Wiercigroch, M. Experimental verification of the vibro-impact capsule model [J]. Nonlinear Dyn. 2013, 83: 1029–1041.
[22] Yan, Y., Liu, Y., Páez Chávez, J., et al. Proof-of-concept prototype development of the self-propelled capsule system for pipeline inspection [J]. Meccanica. 2017, 53(8): 1997–2012.
[23] Liu, Y., Wiercigroch, M., Pavlovskaia, E., et al. Forward and backward motion control of a vibro-impact capsule system [J]. International Journal of Non-Linear Mechanics,2015, 70: 30–46.
[24] Yan, Y., Liu, Y., Liao, M. A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints[J]. Nonlinear Dynamics, 2017, 89:1063-1087.

PDF(2877 KB)

Accesses

Citation

Detail

段落导航
相关文章

/