离心泵入口压力在汽蚀工况下的分频带混沌特性研究

梁超,周云龙,杨宁,刘起超

振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 71-77.

PDF(933 KB)
PDF(933 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 71-77.
论文

离心泵入口压力在汽蚀工况下的分频带混沌特性研究

  • 梁超,周云龙,杨宁,刘起超
作者信息 +

Chaotic characteristics of multi-frequency band of centrifugal pump inlet pressure under cavitation condition

  • LIANG Chao, ZHOU Yunlong, YANG Ning, LIU Qichao
Author information +
文章历史 +

摘要

使用动态压力传感器采集了离心泵在不同有效汽蚀余量(NPSHa)下的入口压力脉动信号。对压力信号进行3层8频带的小波包分解。将小波包分解系数作为时间序列并计算出3个混沌特征参数:最大李雅普诺夫指数、关联维数、K2熵;分析并讨论了这些参数的特点和变化规律。结果表明:8个频带中的分解系数,前3个频带数据全都具有典型的混沌特征,3个混沌特征参数从不同角度描述系统的混沌特性,能够把不同NPSHa值所对应的汽蚀工况划分成4个不同的汽蚀阶段。

Abstract

Pressure fluctuation signals of a centrifugal pump inlet under different effective net positive suction head available (NPSHa) conditions were measured using dynamic pressure sensors.The3-layer 8-band wavelet packetdecomposition was done for the pressure signals.Wavelet packet decomposition coefficients were taken as time series to calculate 3 chaotic characteristic parameters including the maximal Lyapunov exponent, correlation dimension and K2 entropy.These parameters’ features and changelaws were analyzed and discussed.Results showed that the first 3 of decomposition coefficients in 8-band all have typical chaotic features; 3 chaotic characteristic parameters can be used to describe the system’s chaotic characteristics from different angles, and divide cavitation conditions corresponding to different NPSHa values into 4 different cavitation stages.

关键词

离心泵 / 汽蚀 / 小波包 / 频带 / 混沌特性

Key words

centrifugal pump / cavitation / wavelet packet / frequency band / chaotic characteristics

引用本文

导出引用
梁超,周云龙,杨宁,刘起超. 离心泵入口压力在汽蚀工况下的分频带混沌特性研究[J]. 振动与冲击, 2020, 39(23): 71-77
LIANG Chao, ZHOU Yunlong, YANG Ning, LIU Qichao. Chaotic characteristics of multi-frequency band of centrifugal pump inlet pressure under cavitation condition[J]. Journal of Vibration and Shock, 2020, 39(23): 71-77

参考文献

[1] 周云龙,刘永奇,薛广鑫.基于EMD和边际谱带能量的离心泵汽蚀故障诊断[J].化工学报,2012,63(2):545-550.
ZHOU Yunlong,LIU Yongqi,XUE Guangxin.Fault diagnosis of cavitation forcentrifugal pump based on EMD and HHT marginal spectrumenergy[J].Journal of Chemical Industry and Engineering,2012,63(2):545-550.
[2] 周云龙,梁超.基于EMD能量熵的离心泵汽蚀故障诊断研究方法[J].化工自动化仪表,2010,37(5):41-46.
ZHOU Yunlong,LIANG Chao. Research on fault dignosis of vavitation for a centrifugal pump based on energy of EMD[J].Contral and Instruments in Chemical Industry,2010,37(5):41-46.
[3] 周云龙,吕远征.基于多点噪声分析的离心泵早期汽蚀故障诊断[J].振动与冲击,2017,36(7):39-44.
ZHOU Yunlong,LÜ Yuanzheng.Incipient cavitation fault diagnosis for a centrifugal pump based on multi-position noise      analysis[J].Journal of Vibration and Shock,2017,36(7):39-44.
[4] 郝点,周昌静,张志飞.相关小波分析用于离心泵初生汽蚀诊断[J].石油大学学报(自然科学版),2005,29(2):78-82.
HAO Dian,ZHOU Changjing,ZHANG Zhifei. Diagnosis of incipient cavitation in centrifugal pump using wavlet combined with autocorrelation methord[J]. Journal of the  University of Petroleum(Edition of Natural Science),2005,29(2):78-82.
[5] 关醒凡.现代泵技术手册[M].北京:中国宇航出版社,1995.
Guan Xingfan.Modern pump technical manual[M].Bei Jing:China Astronantic Publishing House,1995.
[6] 徐家祖,尹勐.离心泵的低频汽蚀脉动现象[J].流体机械,1998,26(1):5-9.
XU Jiazu,YIN Meng. Low frequency fluctuation phenomenon of cavitation in a centrifugal pump[J].Fluid Mechinary,1998,26(1):5-9.
[7] 苏祖强,萧红,张毅等.基于小波包分解与主流形识别的非线性降噪[J].仪器仪表学报,2016,37(9):1954-1961.
SU Zuqiang,XIAO Hong,ZHANG Yi et al.Nonlinear noise reduction method based on wavelet packet decomposition and principle mainfold learning[J].Chinese Journal of Science Instrument,2016,37(9):1954-1961.
[8] 何正嘉,訾艳阳,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007.
HE Zhengjia,ZI Yanyang,ZHANG Xining.Modern signal processing and engineering applications[M].Xi’an: Xi’an Jiaotong University Press,2007.
[9] 孙斌,刘天栋,周云龙.小波包主成分分析在气液两相流流型识别中的应用[J].吉林大学学报(工学版),2009,39(6):   1532-1537.
SUN Bin,LIU Tiandong,ZHOU Yunlong. Application of principal component analysis of wavelet packet on flow   regime identification of gas-liquid two-phase flow[J].Journal of Jilin University(Engineering ang Technology Edition),2009,39(6):1532-1537.
[10] Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series the role of the time window length[J]. Physica D,1996,95(1-2): 13-28.
[11] H S Kim,R Eykholt,J D Salas.Nonlinear dynamics delay times and embedding windows[J]. Physica D,1999,127(1-2):48-60.
[12] Grassberger P,Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D,1983,9(1-2):189-208.
[13] 吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
LÜ Jinhu.Chatics time series analysis and application[M]. Wuhan: Wuhan University Press,2002.
[14] Rosenstein M T,Collins J,Deluca C J.A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993,65(1-2):117-134.
[15] 张文超.摆动条件下自然循环流动不稳定性混沌特性分析及预测[D]. 哈尔滨:哈尔滨工程大学,2013.
ZHANG Wenchao.Chaotic analysis and prediction on flow instability of natural circulation under rolling motion condition[D].Harbin:Harbin Engineering University,2013.
[16] 刘云平,李渝,陈城.基于李雅普诺夫指数的非完整约束系统稳定性[J].华中科技大学学报(自 然 科 学 版),2016,44(12):98-101.
LIU Yunping,LI Yu,CHEN Cheng.Stablity of nonholonomic constraint system based on Lyapunov exponent[J]. Journal of Huazhong University of Science and technology,2016,44(12):98-101.
[17] 余波,李应红,张朴.关联维数和Kolmogorov熵在航空发动机故障诊断中的应用[J].航空动力学报,2006,21(1):219-224.
YU Bo,LI Yinghong,ZHANG Pu.Applacation of correlation dimension and Kolmogorov entropy in aeroengine fault diagnosis[J]. Journal of aerospace power,2006,21(1):219-224.
[18] Chebyshev,Petersburg.An announce of  results linking  Kolmogorov complexity to entropy for amenable group actions[J].Journal of mathematical sciences,2019,240(5):503-506.

PDF(933 KB)

Accesses

Citation

Detail

段落导航
相关文章

/