抗蛇行减振器对高速列车稳定性的影响

白瑾瑜,曾京,石怀龙,吴一

振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 78-83.

PDF(1304 KB)
PDF(1304 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 78-83.
论文

抗蛇行减振器对高速列车稳定性的影响

  • 白瑾瑜,曾京,石怀龙,吴一
作者信息 +

Effects of anti-hunting shock absorber on stability of high-speed train

  • BAI Jinyu, ZENG Jing, SHI Huailong, WU Yi
Author information +
文章历史 +

摘要

首先,建立了考虑卸荷特性、节点刚度和内部油液刚度的抗蛇行减振器分段线性Maxwell模型,分析了节点刚度对抗蛇行减振器动态特性的影响,并采用台架试验进行了模型验证。然后,建立了高速列车拖车非线性动力学模型,并进行仿真分析,发现随着车轮踏面等效锥度的提高,保障高速列车运动稳定性所需要的抗蛇行减振器节点刚度最优值也会逐渐增大。最后,对比分析了多种抗蛇行减振器节点刚度下高速列车的运动稳定性,探究了考虑等效锥度变化的抗蛇行减振器节点刚度选择策略。

Abstract

Here, firstly, a piecewise linear Maxwell model for anti-hunting shock absorber considering unloading characteristics, joint stiffness and internal oil stiffness was established.Effects of joint stiffness on dynamic characteristics of anti-hunting shock absorber were analyzed and the model verification was done with bench tests.Then, the non-linear dynamic model of high-speed train trailer was established and simulated.It was shown that with increase in equivalent conicity of wheel tread, the optimal joint stiffness value of anti-hunting shock absorber required to ensure the motion stability of high-speed train also gradually increases.Finally, motion stabilities of high-speed trains with multiple kinds of joint stiffness of anti-hunting shock absorber were contrastively analyzed.The choosing strategy for joint stiffness of anti-hunting shock absorber considering variation of equivalent conicity was explored.

关键词

高速列车 / 抗蛇行减振器 / 节点刚度 / 分段线性Maxwell模型 / 动力学 / 等效锥度

Key words

high-speed train / anti-hunting shock absorber / joint stiffness / piecewise linear Maxwell model / dynamics / equivalent conicity

引用本文

导出引用
白瑾瑜,曾京,石怀龙,吴一. 抗蛇行减振器对高速列车稳定性的影响[J]. 振动与冲击, 2020, 39(23): 78-83
BAI Jinyu, ZENG Jing, SHI Huailong, WU Yi. Effects of anti-hunting shock absorber on stability of high-speed train[J]. Journal of Vibration and Shock, 2020, 39(23): 78-83

参考文献

[1] O Polach, A Vetter. Comparability of the nonlinear and linearized stablility assessment during railway vehicle design[J]. Vehicle System Dynamics, 2006, 44(S):129-138.
[2] Goodall, R Li, H. Solid axle and independently-rotating railway wheelsets-a control engineering assessment of stability[J]. Vehicle System Dynamics, 2000, 33(1): 57-67.
[3] 吴娜,曾京,王亦佳. 轮轨磨耗状态下悬挂参数失效对车辆动力学性能的影响[J]. 振动与冲击,2015,34(5):82-87.
WU Na, ZENG Jing, WANG Yijia. Effect of wheel/rail wear and suspension system failure on vehicle dynamic performance[J]. Journal of Vibration and Shock, 2015, 34(5):82-87.
[4] Francesco Braghin. Active yaw damper for the improvement of railway vehicle stability and curving performances: simulations and experimental results[J]. Vehicle System Dynamics, 2006, 44(11): 857-869.
[5] Huang Caihong, Zeng Jing. Dynamic behavior of a high-speed train hydraulic yaw damper[J]. Vehicle System Dynamics, 2018,56(12): 1922-1944.
[6] Huang Caihong, Zeng Jing, Liao Shulin. Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie[J]. Proceedings of the Institution of Mechanical Engineers, 2014, 228(5): 522-534.
[7] Alonso A. Yaw damper modeling and its influence on the railway dynamic stability[J]. Vehicle System Dynamics, 49(9), 1367-1387, 2011.
[8] 曾 京,邬平波.减振器橡胶节点刚度对铁道客车系统临界速度的影响[J].中国铁道科学,2008,29(2):94-98.
ZENG Jing, WU Pingbo. Influence of rubber joint stiffness of shock absorber on critical speed of railway passenger car system[J]. China Railway Science, 2008, 29(2): 94-98.
[9] Shimomura T. Stability and riding comfort of high speed vehicles[J]. RRR, 2004,61(1),14-17.
[10] 马卫华,王自力,罗世辉. 减振器安装刚度对径向转向架机车横向动力学性能的影响[J]. 铁道机车车辆,2005,25(4):10-13.
MA Weihua, WANG Zili, LUO Shihui. Effect of shock absorber installation stiffness on lateral dynamic performance of radial bogie locomotives[J]. Railway Locomotives and Car, 2005, 25(4):10-13.
[11] 张振先,杨东晓,池茂儒.抗蛇行减振器的模型研究[J].机械,2015,42(7):1-5.
ZHANG Zhenxian, YANG Dongxiao, CHI Maolu. Model study of anti-yaw damper[J]. Machinery, 2015, 42(7): 1-5.
[12] 刘永强,杨绍普,廖英英. 高速动车组悬挂系统横向半主动控制仿真分析[J]. 振动与冲击,2010,29(9):51-54.
LIU Yongqiang, YANG Shaopu, LIAO Yingying. Simulation analysis of lateral semi-active control for suspension system for high-speed EMUs [J]. Journal of Vibration and Shock, 2010, 29(9): 51-54.
[13] 谭富星,石怀龙, 王玮, 等. 转向架橡胶件动态参数的高低温特性[J]. 交通运输工程学报, 2019, 19(4): 104-114.
TAN Fuxing, SHI Huailong, WANG Wei, et al. High and low temperature characteristics of rubber component Dynamic parameters of a bogie[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 104-114.
[14] 滕万秀, 罗仁, 石怀龙, 等. 高寒动车组-40℃环境下动力学性能[J]. 机械工程学报, 2019, 55(4):148-153.
TENG Wanxiu, LUO Ren, SHI Huailong,et al. Dynamic performance of high-cold emu under -40 ℃ environment[J]. Journal of Mechanical Engineering, 2019, 55(4):148-153.
[15] 韩辰辰, 曾京, 石怀龙, 等. 关于低温状态下高速动车组运行稳定性的研究[J]. 机械, 2019, 46(7):6-10+54.
HAN Chenchen, ZENG Jin, SHI Huailong,et al. Study on operation stability of high speed EMU at low temperature[J]. Mechanics, 2019, 46(7):6-10+54.
[16] 罗 仁,石怀龙.铁道车辆系统动力学及应用[M].成都:西南交通大学出版社,2018.
LUO Ren, SHI Huailong. Dynamics of Railway Vehicle Systems and Application[M]. Chengdu: Southwest Jiaotong University Press, 2018.
[17] 明星宇.抗蛇行减振器动态参数对动车组动力学性能影响研究[D].成都:西南交通大学,2016.
MING Xingyu. Study on the influence of dynamic parameters of anti-yaw damper on dynamic performance of EMU[D]. Chengdu: Southwest Jiaotong University, 2016.
[18] 汪群生,曾 京,魏 来,张传英,等.抗蛇行减振器安装角度对车辆系统动力学的影响[J].铁道车辆,2016,54(5):1-4.
WANG Qunsheng, ZENG Jing, WEI Lai, et al. Effects of installation angle of anti-snake shock absorber on vehicle system dynamics[J]. Railway Vehicles, 2016, 54(5): 1-4.

PDF(1304 KB)

Accesses

Citation

Detail

段落导航
相关文章

/