基于准零刚度隔振器的船舶推进轴系纵向减振研究

赵含1,杨志荣2,塔娜1,饶柱石1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 90-95.

PDF(1089 KB)
PDF(1089 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 90-95.
论文

基于准零刚度隔振器的船舶推进轴系纵向减振研究

  • 赵含1,杨志荣2,塔娜1,饶柱石1
作者信息 +

Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator

  • ZHAO Han1, YANG Zhirong2, TA Na1, RAO Zhushi1
Author information +
文章历史 +

摘要

通过对准零刚度隔振器的静力学特性研究,比较分析了两种模型的结构参数对低动刚度位移范围的影响。利用有限元法,将隔振器的回复力作为一端边界条件,建立了基于准零刚度隔振器的推进轴系纵振动力学模型,应用谐波平衡法求解出系统的力传递率。结合船舶模拟工况参数,对比研究了基于不同隔振器模型的推进轴系,在叶频激励下的隔振效果。分析结果表明,准零刚度隔振器可以在等效线性系统的基础上实现推进轴系的纵向叶频隔振,选择适当的准零刚度隔振器模型和阻尼,可以避免主共振出现跳跃现象并保持低频隔振效果。

Abstract

Based on static characteristics study of two quasi-zero-stiffness (QZS) isolators, effects of the two isolator models’ structural parameters on displacement range of low dynamic stiffness were contrastively analyzed.The dynamic model for longitudinal vibration of ship propulsion shafting based on QSZ isolator with its restoring force taken as one end’s boundary condition was established using the finite element (FE) method.The force transmissibility of the system was solved with the harmonic balance method.Combined with simulated ship working condition parameters, vibration isolation effects under excitation of blade frequency for ship propulsion shafting based on different isolator models were contrastively studied.Analysis results showed that the QZS isolator can realize longitudinal vibration reduction of ship propulsion shafting under excitation of blade frequency based on an equivalent linear system; choosing a suitable QZS isolator model and damping can avoid jump phenomenon occurring during main resonance and keep low frequency vibration isolation effect.

关键词

准零刚度;推进轴系纵振;低频隔振 / 有限元分析

Key words

quasi-zero-stiffness (QZS) / longitudinal vibration of ship propulsion shafting / low-frequency vibration isolation / finite element analysis

引用本文

导出引用
赵含1,杨志荣2,塔娜1,饶柱石1. 基于准零刚度隔振器的船舶推进轴系纵向减振研究[J]. 振动与冲击, 2020, 39(23): 90-95
ZHAO Han1, YANG Zhirong2, TA Na1, RAO Zhushi1. Longitudinal vibration reduction of ship propulsion shafting based on quasi-zero-stiffness isolator[J]. Journal of Vibration and Shock, 2020, 39(23): 90-95

参考文献

[1] 赵 耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其控制技术研究进展[J]. 中国造船, 2011, 52(4): 259-269.
Zhao Y, Zhang G B, Li L W. Review of advances on longitudinal vibration of ship propulsion shafting and its control technology[J]. Shipbuilding of China, 2011, 52(4): 259-269.
[2] Poole R. The axial vibration of diesel engine crankshafts[J]. Proceedings of the Institution of Mechanical Engineers, 1941, 146(1): 167-182
[3] Rigby C P. Longitudinal vibration of marine propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1948, 60: 67-78.
[4] Goodwin. The design of a resonance changer to overcome excessive axial vibration of propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1960, 72: 37-62.
[5] Merz S, Kinns R, Kessissoglou N. Effect of a submarine shaft resonance changer in the presence of fluid forces[C]//Proc 7th European Conf Struct Dynamics. Southampton. 2008.
[6] 储 炜, 赵 耀, 张赣波, 等. 共振转换器的动力反共振隔振理论与应用[J]. 船舶力学, 2016, 20(1/2): 222-230.
Chu W, Zhao Y, Zhang G B, et al. Dynamic anti-resonance vibration isolation theory of resonance changer and application[J]. J. Ship Mech, 2016, 20(1-2): 222-230.
[7] 何江洋, 何 琳, 徐 伟, 等. 船舶推力轴承弹性支承的轴系纵振减振性能研究[J]. 船舶力学, 2017, 21(5): 613-620.
He J Y, He L, Xu W, et al. Longitudinal vibration isolation of marine shafting under different supporting forms of thrust bearing[C]//MECHANICS AND MECHANICAL ENGINEERING: Proceedings of the 2015 International Conference (MME2015). 2016: 562-571.
[8] 刘耀宗, 王 宁, 孟 浩, 等. 基于动力吸振器的潜艇推进轴系轴向减振研究[J]. 振动与冲击, 2009, 28(5): 184-187.
Yaozong L, Ning W, Hao M, et al. Design of dynamic vibration absorbers to reduce axial vibration of propelling shafts of submarines[J]. Journal of Vibration and Shock, 2009, 28(5): 184-187.
[9] 秦春云, 杨志荣, 饶柱石, 等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制, 2013, 33(3): 147-152.
Qin C Y, Yang Z R, Rao Z S, et al. Study on suppression of the longitudinal vibration of ship's propulsion shafting system[J]. Noise and Vibration Control, 2013, 33(3): 147-152.
[10] 杨志荣, 秦春云, 饶柱石, 等. 船舶推进轴系纵振动力吸振器设计及参数影响规律研究[J]. 振动与冲击, 2012, 31(16): 48-51.
Yang Z R , Qin C Y , Rao Z S , et al. Design and analysis of a dynamic absorber for reducing axial vibration of ship shafting[J]. Zhendong yu Chongji/Journal of Vibration and Shock, 2012, 31(16):48-51+61.
[11] 卢 坤, 刘 翎, 杨志荣, 等. 基于磁流变弹性体的推进轴系半主动式吸振器研究[J]. 振动与冲击, 2017, 36(15): 36-42.
Lu K , Liu L , Yang Z , et al. Semi-active dynamic absorber of a ship propulsion shafting based on MREs[J]. Journal of Vibration & Shock, 2017, 36(15):36-42.
[12] 路纯红, 白鸿柏. 新型超低频非线性被动隔振系统的设计[J]. 振動與衝擊, 2011, 30(1): 234-236.
Lu C H, Bai H B. A new type nonlinear ultra-low frequency passive vibration isolation system[J]. Zhendong yu Chongji(Journal of Vibration and Shock), 2011, 30(1): 234-236.
[13] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5): 707-717.
[14] 孟令帅, 孙景工, 牛 福, 等. 新型准零刚度隔振系统的设计与研究[J]. 振动与冲击, 2014, 33(11): 195-199.
Meng L S, Sun J G, Niu F, et al. Design and analysis of a novel quasi-zero stiffness vibration isolation system[J]. Journal of Vibration and Shock, 2014, 33(11): 195-199.
[15] Meng L, Sun J, Wu W. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element[J]. Shock and Vibration, 2015, 2015.
[16] Zhou N, Liu K. A tunable high-static–low-dynamic stiffness vibration isolator[J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273.
[17] 徐道临, 赵 智, 周加喜. 气动可调式准零刚度隔振器设计及特性分析[D]. , 2013.
Daolin X, Zhi Z, Jiaxi Z. Design and Analysis of an Adjustable Pneumatic Vibration Isolator with Quasi-Zero-Stiffness Characteristic[J]. Journal of Hunan University (Natural Sciences), 2013, 40(6): 47-52.
[18] Huang X C, Liu X T, Hua H X. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation[J]. International Journal of Non-Linear Mechanics, 2014, 65: 32-43.
[19] Le T D, Ahn K K. Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 3873-3884.
[20] Zhou J, Wang X, Xu D, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms[J]. Journal of Sound and Vibration, 2015, 346: 53-69.
 

PDF(1089 KB)

460

Accesses

0

Citation

Detail

段落导航
相关文章

/