近断层地震动下公路桥梁铅芯橡胶支座变形发热及性能退化效应研究

石岩,王浩浩,秦洪果,韩建平,熊利军

振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 96-106.

PDF(1740 KB)
PDF(1740 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (23) : 96-106.
论文

近断层地震动下公路桥梁铅芯橡胶支座变形发热及性能退化效应研究

  • 石岩,王浩浩,秦洪果,韩建平,熊利军
作者信息 +

Deformation, heating and performance degradation of lead rubber bearings for highway bridges under near fault ground motions

  • SHI Yan, WANG Haohao, QIN Hongguo, HAN Jianping, XIONG Lijun
Author information +
文章历史 +

摘要

铅芯橡胶支座(LRB)是目前应用广泛的桥梁减隔震装置,地震中LRB往复变形会引发热量累积及温度升高,进而导致滞回耗能、特征强度和刚度的降低等力学性能方面的变化并威胁桥梁地震安全。以《公路桥梁铅芯隔震橡胶支座》(JT/T 822-2011)中22种型号的圆形LRB为对象,建立40个不同周期的单支座隔震结构模型,通过输入普遍适用于交通运输领域结构抗震设计和研究的40组水平双向近断层地震动记录进行非线性动力时程分析,研究了考虑铅芯发热与否对LRB的位移、温度、特征强度和滞回耗能等因素的影响,还讨论了铅芯温度增量和特征强度降低率与近断层地震动的关系,建立了支座位移延性系数、剪应变和特征强度与重量之比(Qd/W)的拟合关系式。结果表明:对于中长周期(1.5s~3s)隔震体系,在近断层地震动下内部铅芯温度升高、特征强度下降现象明显,其温度增量在50℃~80℃,特征强度降低20%~40%,不考虑铅芯发热会低估15%左右的位移反应。

Abstract

Lead-rubber bearings (LRBs) are extensively used seismic isolators in bridges.The cyclic deformation of LRBs under earthquake can cause heating accumulation and temperature rising.As a result, variations of mechanical properties of LRBs including dropping of hysteretic energy dissipation, characteristic strength and stiffness threaten seismic safety of bridges.Here, according to the code of the lead rubber bearing isolator for highway bridge (JT/T 822—2011), 22 types circular LRBs were taken as objects to establish 40 single bearing isolation structure models with different periods.40 bilateral near-fault ground motion records suitable to transportation field structure aseismic design were input into models to perform nonlinear dynamic time history analyses.Effects of lead core heating on LRBs’ displacement, temperature, characteristic strength and hysteretic energy dissipation were studied.In addition, relations among increment of lead core temperature, characteristic strength reduction rate and near-fault ground motion were discussed to establish fitted relation expressions among bearing displacement ductility coefficient, shear strain and Qd/W.Results showed that for the isolated systems with medium-long periods (1.5~3 s) under near fault ground motion, lead core temperature rising and characteristic strength dropping are obvious, the increase in lead core temperature is 50 ℃-80 ℃, characteristic strength drops 20%-40%; displacement responses of LRBs can be under-estimated by 15% not considering lead core heating.

关键词

公路桥梁 / 减隔震 / 铅芯橡胶支座 / 强度退化 / 近断层地震动

Key words

highway bridge / seismic isolation / lead-rubber bearing (LRB) / strength degradation / near fault ground motion

引用本文

导出引用
石岩,王浩浩,秦洪果,韩建平,熊利军. 近断层地震动下公路桥梁铅芯橡胶支座变形发热及性能退化效应研究[J]. 振动与冲击, 2020, 39(23): 96-106
SHI Yan, WANG Haohao, QIN Hongguo, HAN Jianping, XIONG Lijun. Deformation, heating and performance degradation of lead rubber bearings for highway bridges under near fault ground motions[J]. Journal of Vibration and Shock, 2020, 39(23): 96-106

参考文献

[1] 李建中, 管仲国. 桥梁抗震设计理论发展:从结构抗震减震到震后可恢复设计[J]. 中国公路学报, 2017, 30(12): 1-9.
LI Jianzhong, GUAN Zhongguo. Research progress on bridge seismic design: target from seismic alleviation to post-earthquake structural resilience[J]. China Journal of Highway and Transport, 2017, 30(12): 1-9.
[2] 石岩, 王东升, 孙治国. 基于位移的中等跨径减隔震桥梁抗震设计方法[J]. 中国公路学报, 2016, 29(02): 71-81.
SHI Yan, WANG Dongsheng, Sun Zhiguo. Displace- ment-based seismic design method for medium span bridges with seismic isolation[J]. China Journal of Highway and Transport, 2016, 29(02): 71-81.
[3] 石岩, 李军, 韩建平, 等. 隔震铅芯橡胶支座变形发热及其强度退化研究综述[J]. 世界地震工程, 2019, 35(3): 117-125.
SHI Yan, LI Jun, HAN Jianping, et al. Review on heating effect and strength degradation of lead rubber bearings[J]. World Earthquake Engineering, 2019, 35(3): 117-125.
[4] 石岩, 王东升, 韩建平, 等. 桥梁减隔震技术的应用现状与发展趋势[J]. 地震工程与工程振动, 2017, 37(05): 118-128.
SHI Yan, WANG Dongsheng, HAN Janping, et al. Application status of seismic isolation for bridges and its development tendency[J]. Earthquake Engineering and Engineering Vibration, 2017, 37(05): 118-128.
[5] Takahashi Y. Damage of rubber bearings and dampers of bridges in 2011 Great East Japan earthquake[C]. Tokyou, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 2012.
[6] Buckle I, Yen W, Marsh L, et al. Implications of bridge performance during Great East Japan earthquake for US seismic design practice[C]. Tokyou, Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 2012.
[7] Constantinou MC, Whittaker AS, Kalpakidis Y, et al. Performance of seismic isolation hardware under service and seismic loading(MCEER 07-0012)[R]. New York: University at Buffalo, 2007
[8] Kalpakidis IV, Constantinou MC. Effects of heating on the behavior of lead-rubber bearings. I: theory[J]. Journal of Structural Engineering, 2009, 135(12): 1440-1449.
[9] Kalpakidis IV, Constantinou MC. Effects of heating on the behavior of lead-rubber bearings. II: verification of theory[J]. Journal of Structural Engineering, 2009, 135(12): 1450-1461.
[10] 石岩, 王东升, 孙治国, 等. 隔震斜交连续梁桥地震反应及环境温度影响研究[J]. 振动与冲击, 2014, 33(14):  118-124.
SHI Yan, WANG Dongsheng, SUN zhiguo, et al. Seismic response of isolated continuous skew bridge and the effect of ambient temperature on seismic behavior of bridge[J]. Journal of Vibration and Shock, 2014, 33(14): 118-124.
[11] Takaoka E, Takenaka Y, Kondo A, et al. Heat-mechanics interaction behavior of laminated rubber bearings under large and cyclic lateral deformation[C]//Proceedings of the 14th Conference on Earthquake Engineering, Beijing, China. 2008: 12-17.
[12] Özdemir G. Lead core heating in lead rubber bearings subjected to bidirectional ground motion excitations in various soil types[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(2): 267-285.
[13] 秦川, 刘文光, 何文福, 等. 考虑铅芯温度效应的橡胶支座参数影响分析[J]. 振动与冲击, 2017, 36(10): 182-189.
Qin Chuan, Liu Wenguang, He Wenfu et al. Comparative analysis of lead heating effects on lead rubber bearing behaviour[J]. Journal of Vibration and Shock, 2017, 36(10): 182-189.
[14] Gholhaki M, Banazadeh M, Sani HP. Performance assessment of steel isolated structures considering heating in lead core based on seismic risk[J]. Journal of Seismology and Earthquake Engineering, 2016, 18(4): 263.
[15] 徐婷婷. 减隔震桥梁铅芯温度效应影响及地震能量反应[D]. 大连海事大学, 2018.
XU Ting-ting. Lead core heating effects on seismic response of LRB isolated bridge and energy balance analysis[D]. Dalian Maritime University, 2018.
[16] 郑文智, 王浩, 沈惠军, 等. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(04): 188-195.
ZHENG Wenzhi, WANG Hao, SHEN Huijun, et al. Thermal effects on response of seismic isolated bridges subjected to strong ground motions[J]. Engineering Mechanics, 2019, 36(4): 188-195.
[17] Ozdemir G, Dicleli M. Effect of lead core heating on the seismic performance of bridges isolated with LRB in near‐fault zones[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 1989-2007.
[18] Dicleli M. Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics[J]. Earthquake Spectra, 2006, 22(4): 887-907.
[19] 梁瑞军, 王浩, 郑文智, 等. 隔震曲线连续梁桥铅芯橡胶支座参数优化[J]. 工程力学, 2019, 36(11): 83-90.
LIANG Ruijun, WANG Hao, ZHENG Wenzhi, et al. parameter optimization of lead rubber bearings of an isolated curved girder bridge[J]. Engineering Mechanics, 2019, 36(11): 83-90.
[20] Kumar M, Whittaker AS, Constantinou MC. An advanced numerical model of elastomeric seismic isolation bearings[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(13): 1955-1974.
[21] 石岩, 王东升, 孙治国, 等. 近断层地震动下减隔震桥梁地震反应分析[J]. 桥梁建设, 2014, 44(03): 19-24.
SHI Yan, WANG Dongsheng, SUN Zhiguo, et al. Analysis of seismic response of seismically mitigated and isolated bridge subjected to near-fault ground motion[J]. Bridge Construction, 2014, 44(3):19-24.
[22] 韩淼, 张文会, 朱爱东, 等. 不同层隔震结构在近断层地震作用下动力响应分析[J]. 振动与冲击, 2016, 35(5): 120-124.
Han Miao, Zhang Wenhui, Zhu Aidong, et al. Analysis on dynamic responses of different story isolation structures to near-fault ground motions. Journal of Vibration and Shock, 2016, 35(5): 120-124.
[23] Baker JW, Lin T, Shahi SK, et al. New ground motion selection procedures and selected motions for the PEER transportation research program[R]. Pacific Earthquake Engineering Research Center(PEER), 2011.
[24] Tian L, Yi S, Qu B. Orienting ground motion inputs to achieve maximum seismic displacement demands on electricity transmission towers in near-fault regions[J]. Journal of Structural Engineering, 2018, 144(4): 04018017.

PDF(1740 KB)

Accesses

Citation

Detail

段落导航
相关文章

/