可调永磁双稳态非线性能量阱及应用研究

姚红良,刘帅,王钰玮,闻邦椿

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 127-133.

PDF(1888 KB)
PDF(1888 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 127-133.
论文

可调永磁双稳态非线性能量阱及应用研究

  • 姚红良,刘帅,王钰玮,闻邦椿
作者信息 +

Adjustable permanent magnet bi-stable nonlinear energy sink and its application

  • YAO Hongliang,   LIU Shuai,   WANG Yuwei,   WEN Bangchun
Author information +
文章历史 +

摘要

为了实现对主系统的宽频振动抑制,研发了一种可调的双稳态非线性能量阱(BNES)。介绍了BNES的结构和工作原理;其次分析了BNES的刚度构成以及其非线性动力学特性,并建立了悬臂梁-BNES系统动力学微分方程;采用数值方法探究了不同磁铁间距时的BNES对悬臂梁瞬态时域振动抑制效果和稳态频域的宽频抑振能力;对两组不同的悬臂梁系统进行了实验,验证了不同磁铁间距时的双稳态非线性能量阱的宽频振动抑制能力。研究结果表明,该BNES对悬臂梁的瞬态时域响应和稳态频域响应都有很好的振动抑制能力。

Abstract

In order to realize broadband vibration suppression of main system, an adjustable bi-stable nonlinear energy sink (BNES) was developed.Firstly, structure and working principle of BNES were introduced.Secondly, the stiffness composition of BNES and its nonlinear dynamic features were analyzed, and the dynamic differential equation of a cantilever beam-BNES system was established.Then, the numerical method was used to investigate the suppression effect of BNES with different magnet spacing on cantilever beam’s transient time domain vibration and BNES’s broadband vibration suppression ability in steady state frequency domain.Finally, tests were conducted for two groups of different cantilever beam systems to verify the broadband vibration suppression ability of bi-stable nonlinear energy sink with different magnet spacing.The study results showed that BNES has very good vibration suppression ability for both transient time domain response and steady-state frequency domain one of cantilever beam systems.

关键词

双稳态非线性能量阱 / 悬臂梁系统 / 振动抑制 / 靶向能量传递

Key words

bi-stable nonlinear energy sink / cantilever beam system / vibration suppression / target energy transfer

引用本文

导出引用
姚红良,刘帅,王钰玮,闻邦椿. 可调永磁双稳态非线性能量阱及应用研究[J]. 振动与冲击, 2020, 39(3): 127-133
YAO Hongliang, LIU Shuai, WANG Yuwei, WEN Bangchun. Adjustable permanent magnet bi-stable nonlinear energy sink and its application[J]. Journal of Vibration and Shock, 2020, 39(3): 127-133

参考文献


参考文献
 [1] 张震坤,何立东,黄秀金,等. 鼠笼式调谐质量阻尼器用于转子振动控制的研究[J]. 北京化工大学学报(自然科学版), 2015, 42(03): 82-87.
ZHANG Zhen-kun, HE Li-dong, HUANG Xiu-jing, et al. Research on squirrel cage tuned mass damper for rotor vibration control [J]. Journal of Beijing University of Chemical Technology (natural science edition), 2015, 42(03): 82-87.
 [2] 卢琦,谢溪凌,刁建超,等. 多孔流体阻尼式动力吸振器的动力学建模及实验研究[J]. 噪声与振动控制, 2018, 38(01): 58-62.
LU Qi, XIE Xi-ling, DIAO Jian-chao, et al. Dynamic modeling and experimental study of a porous fluid damping dynamic absorber[J]. Noise and vibration control, 2018,38(01): 58-62.
 [3] 邢健,何立东,王锎. 基于磁流变液阻尼器的单跨转子振动主动控制实验研究[J]. 仪器仪表学报, 2013, 34(12): 48-54.
XING Jian, HE Li-dong, WANG Kai. Experimental study on active vibration control of single span rotor based on magnetorheological fluid damper [J]. Journal of instruments and instruments, 2013, 34(12): 48-54.
 [4] Huang H, Chang W, Mosalam K M. Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in-service vibration[J]. Structural Control and Health Monitoring,2017,24(2): 18-58.
 [5] 翁光远,王社良. 磁控形状记忆合金主动控制系统及试验研究[J]. 振动与冲击, 2013, 32(01): 43-48.
WENG Guang-yuan, WANG She-liang. Active control system and experimental research of magnetically controlled shape memory alloy [J]. JORNAL OF VIBRATION AND SHOCK, 2013, 32(01): 43-48.
 [6] 胡俊峰,张宪民,徐贵阳. 基于模型预测控制的高速柔性并联机构振动控制[J]. 振动与冲击, 2014, 33(01): 24-32.
HU Jun-feng, ZHANG Xian-min, XU Gui-yang. Vibration control of high speed flexible parallel mechanism based on model predictive control [J]. Vibration and shock, 2014, 3(01): 24-32.
 [7] Gendelman O V, Starosvetsky Y, Feldman M. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes[J]. Nonlinear Dynamics,2007,51(1): 31-46.
 [8] Yang K, Zhang Y, Ding H, et al. Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction[J]. Journal of vibration and acoustics-transactions of the asme,2017,139(2): 1-19.
 [9] Yao H, Zheng D, Wen B. Magnetic Nonlinear Energy Sink for Vibration Attenuation of Unbalanced Rotor System[J]. Shock and Vibration,2017, 2017: 1-15.
[10] Habib G, Romeo F. The tuned bistable nonlinear energy sink[J]. Nonlinear Dynamics,2017,89(1): 179-196.
[11] Al-Shudeifat M A. Highly efficient nonlinear energy sink[J]. Nonlinear Dynamics, 2014,76(4): 1905-1920.
[12] Wu W, Chen X, Shan Y. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J]. Journal of Sound and Vibration,2014,333(13): 2958-2970.
[13] 张晓平,何琳,周炜. 基于磁致负刚度装置的低频隔振平台理论设计[J].振动与冲击, 2016, 35(15): 184-189.
ZHANG Xiao-ping, HE Lin, ZHOU Wei. Theoretical design of a low frequency vibration isolation platform based on permanent magnet negative-stiffness device [J]. JORNAL OF VIBRATION AND SHOCK, 2016, 35(15): 184-189.
[14] 张晓平,何琳,周炜. 一种新型磁致负刚度机构的研究[J]. 噪声与振动控制,2015, 35(04): 159-162.
ZHANG Xiao-ping, HE Lin, ZHOU Wei. Study on a New Negative-stiffness Mechanism Using Tri-magnets[J]. NOISE AND VIBRATION CONTROL, 2015, 35(04): 159-162.
[15] Manevitch L I, Sigalov G, Romeo F, et al. Dynamics of a linear oscillator coupled to a bistable light attachment: analytical study[J]. Journal of Applied Mechanics,2014,81(4): 1-9.
[16] Romeo F, Sigalov G, Bergman L A, et al. Dynamics of a Linear Oscillator Coupled to a Bistable Light Attachment: Numerical Study[J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015,10(1): 1-13.
[17] Romeo F, Manevitch L I, Bergman L A, et al. Transient and chaotic low-energy transfers in a system with bistable nonlinearity[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science,2015,25(5): 53-109.
[18] Qiu D, Li T, Seguy S, et al. Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design[J]. Nonlinear Dynamics,2018,92(2): 443-461.
[19] Al-Shudeifat M A, Wierschem N, Quinn D, et al. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation[J]. International Journal of Non-Linear Mechanics, 2013, 52: 96-109.
[20] 姚丙盟,刘志平,李文锋. 基于双稳态的振动能量收集系统的设计[J]. 中国机械工程,2015, 26(13): 1736-1741.
YAO Bing-meng, LIU Zhi-ping, LI Wen-chun. Design of Vibration Energy Harvester Based on Bistability [J]. China Academic Journal Electronic Publishing House, 2015, 26(13): 1736-1741.
[21]任博林,刘丽兰,张小静,等. 基于双稳态发电的非线性吸振器的动力学特性及参数影响研究[J]. 振动与冲击, 2017, 36(17): 220-230.
REN Bo-lin, LIU Li-lan, ZHANG Xiao-jing. Dynamic characteristics and parametric influences of nonlinear vibration absorbers based on bi-stable power generation [J]. JORNAL OF VIBRATION AND SHOCK, 2017, 36(17): 220-230.

PDF(1888 KB)

Accesses

Citation

Detail

段落导航
相关文章

/