航空发动机鼓筒连续扫描模态测试方法研究

杨青玉1,李朝峰1,2,张子健1,唐千升1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 142-148.

PDF(2778 KB)
PDF(2778 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 142-148.
论文

航空发动机鼓筒连续扫描模态测试方法研究

  • 杨青玉1,李朝峰1,2,张子健1,唐千升1
作者信息 +

Continuously scanning modal test method for aero-engine drum

  • YANG Qingyu1,   LI Chaofeng1,2,   ZHANG Zijian1,  TANG Qiansheng1
Author information +
文章历史 +

摘要

针对航空发动机鼓筒等薄壁圆柱壳型结构,以薄壁圆柱壳为例,基于LabVIEW测试平台、利用非接触式电磁激振器搭建了模态参数测试实验台,并对实验台校准时的各个自由度偏差进行误差分析,给出灵敏度指数指导实验台校准。基于扫频信号包络线法辨识圆柱壳的固有频率,避免能量泄漏,提高辨识精度;基于共振响应辨识模态振型,利用激光旋转扫描测试,提高模态振型测试效率,并研究不同转速下的测试精度。将测试结果与LMS模态分析软件所测结果进行对比,结果表明,利用文中的测试方法得到的模态参数更为准确,具有一定的工程应用价值。

Abstract

Based on LabVIEW test platform, the modal parametric test platform for a thin cylindrical shell was built by using non-contact electromagnetic exciters.This test platform was calibrated with error analysis of each DOF’s deviation.Sensitivity indexes were given to guide calibration of the platform.Natural frequencies of the cylindrical shell were identified based on the sweep frequency signal envelope method to avoid energy leakage and improve recognition accuracy.Modal shapes of the shell were identified based on resonance responses.The laser rotating scanning test was used to improve modal shape test efficiency and the test accuracy was studied under different rotating speeds.The test results were compared with those using LMS modal analysis software.The results showed that modal parameters obtained with the proposed test method are more accurate; the proposed method has a certain engineering application value.

关键词

薄壁圆柱壳 / 模态参数 / 包络线 / 激光旋转扫描 / 误差分析

Key words

thin cylindrical shell / modal parameter / envelope / laser rotating scanning / error analysis

引用本文

导出引用
杨青玉1,李朝峰1,2,张子健1,唐千升1. 航空发动机鼓筒连续扫描模态测试方法研究[J]. 振动与冲击, 2020, 39(3): 142-148
YANG Qingyu1, LI Chaofeng1,2, ZHANG Zijian1, TANG Qiansheng1. Continuously scanning modal test method for aero-engine drum[J]. Journal of Vibration and Shock, 2020, 39(3): 142-148

参考文献

[1] 张新玉, 张文平, 李泉, 等. 圆柱形薄壳结构的试验模态分析方法研究[J]. 哈尔滨工程大学学报, 2006, 27(1): 20-25.
Zhang Xinyu, Zhang Wenping, Li Quan, et al. Experimental modal analysis method of cylindrical thin shell structures [J]. Journal of Harbin Engineering University, 2006, 27(1): 20-25.
[2] 温华兵, 左言言, 夏兆旺, 等. 加筋圆柱壳体支撑结构振动传递特性试验研究[J]. 船舶力学, 2013, 17(7): 785-792.
Wen Huabing, Zuo Yanyan, Xia Zhaowang, et al. Research on the vibration transmission characteristics of the supporting structures of a ring-stiffened cylindrical shell [J]. Journal of Ship Mechanics, 2013, 17(7): 785-792.
[3] 姚熊亮, 刘庆杰, 翁强. 水下加筋圆柱壳体的振动与近场声辐射研究[J]. 中国舰船研究, 2006, 1(2): 13-16.
Yao Xiongliang, Liu Qingjie, Weng Jiang. Research on the Vibration and Near-Field Acoustic Radiation of Underwater Ribbed Cvlindrical Shell [J]. Chinese Journal of Ship Research, 2006, 1(2): 13-16.
[4] 李晖, 孙伟, 许卓等. 基于激光旋转扫描的约束态薄壁圆柱壳模态振型测试新方法[J]. 振动与冲击, 2014, 33(16): 155-159.
Li Hui, Sun Wei, Xu Zhuo, et al. Experimental method of laser rotating sanning to measure mode shapes of constrained thin cylindrical shell [J]. Journal of Vibration and Shock, 2014, 33(16): 155-159.
[5] 李丹, 唐志平, 陶俊林. 单脉冲载荷下伪弹性TiNi合金圆柱壳的响应特性分析[J]. 振动与冲击, 2012, 31(16): 98-103.
Li Dan, Tang Zhiping, Tao Junlin. Response of TiNi cylindrical shells under single wave pulse loading [J]. Journal of Vibration and Shock, 2012, 31(16): 98-103.
[6] Amabili M. Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections [J]. Journal of Sound & Vibration, 2003, 262(4): 921-975.
[7] Farshidianfar A, Farshidianfar M H, Crocker M J, et al. Vibration analysis of long cylindrical shells using acoustical excitation [J]. Journal of Sound & Vibration, 2011, 330(14): 3381-3399.
[8] Jalali H, Parvizi F. Experimental and numerical investigation of modal properties for liquid-containing structures [J]. Journal of Mechanical Science & Technology, 2012, 26(5): 1449-1454.
[9] Grigorenko A Y, Puzyrev S V, Prigoda A P, et al. Theoretical-experimental investigation of frequencies of free vibrations of circular cylindrical shells [J]. Journal of Mathematical Sciences, 2011, 174(2):254-267.
[10] Schwingshackl C W, Massei L, Zang C, et al. A constant scanning LDV technique for cylindrical structures: Simulation and measurement [J]. Mechanical Systems & Signal Processing, 2010, 24(2): 394-405.
[11] Zippo A, Barbieri M, Pellicano F. Experimental analysis of pre-compressed circular cylindrical shell under axial harmonic load [J]. International Journal of Non-Linear Mechanics, 2016, 94: 417-440.
[12] Yang J S, Xiong J, Ma L, et al. Modal response of all-composite corrugated sandwich cylindrical shells [J]. Composites Science & Technology, 2015, 115: 9-20.
[13] Biswal M, Sahu S K, Asha A V. Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results [J]. Composites Part B Engineering, 2016, 98: 108-199.
[14] Lee Y S, Yang M S, Kim H S, et al. A Study on the Free Vibration of the Joined Cylindrical-Spherical Shell Structures [J]. Applied Mechanics & Materials, 2013, 390(27): 207-214.
[15] Koruk H, Dreyer J T, Singh R. Modal analysis of thin cylindrical shells with cardboard liners and estimation of loss factors [J]. Mechanical Systems & Signal Processing, 2014, 45(2): 346-359.
[16] Wang M, Li W, Zhou J, et al. Bellows Swing Measurement and Control System Based on NI Real-Time Hypervisor [J]. Computer Measurement & Control, 2012, 20(7): 1855-1857.
[17] Chung M, Lee H J, Kang Y C, et al. Experimental study on dynamic buckling phenomena for supercavitating underwater vehicle [J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(3): 183-198.
[18] Torvik P J. On estimating system damping from frequency response bandwidths [J]. Journal of Sound & Vibration, 2011, 35(25): 6088-6097.
[19] 王聪梅. 航空发动机典型零件机械加工[M]. 北京: 航空工业出版社, 2014.

PDF(2778 KB)

400

Accesses

0

Citation

Detail

段落导航
相关文章

/