采用紫铜管与磁铁制作了管式电涡流阻尼器,并提出了一种电涡流阻尼器阻尼力的精细化测量方法,消除了摩擦力和惯性力的影响,获得了精确的电涡流阻尼力。研究了阻尼力与电涡流阻尼器中磁级厚度、磁级间距、铜管与磁铁的相对速度等参数的关系;研究结果表明:提出的阻尼力测量方法可以准确地获得磁铁与铜管相互作用的阻尼力时程;阻尼器的阻尼系数随磁级厚度、磁级数的增加而增大,随磁级间距的增大表现出先增大、后减小的趋势;电涡流阻尼器近似为理想的黏性阻尼器,并且其阻尼系数与磁级数也近似成正比。通过引入阻尼系数效率值作为评价指标,获得了管式电涡流阻尼器的磁级厚度和磁级间距的最优值,可为电涡流阻尼器的优化设计提供参考。
Abstract
Here, Copper tubes and magnets were used to fabricate tubular electric eddy dampers.A precise measuring method for damping force of a tubular electric eddy damper was proposed to eliminate effects of friction and inertia force, and obtain accurate electric eddy damping force.Relations between damping force and magnetic pole thickness, pole spacing, relative speed of copper tube to magnet, etc., respectively were studied.The results showed that damping force time history can be accurately obtained using the proposed measuring method; damping coefficient of the damper increases with increase in magnetic pole thickness and number of magnetic pole, and this coefficient firstly increases and then decreases with increase in pole spacing; electric eddy damper is approximately an ideal viscous one and its damping coefficient is directly proportional to number of magnetic pole; taking efficiency value of damping coefficient as the evaluation index, the optimal values for magnetic pole thickness and pole spacing of the tubular electric eddy damper are obtained to provide a reference for the optimal design of tubular electric eddy dampers.
关键词
结构振动控制 /
电涡流阻尼器 /
理想黏性阻尼器 /
阻尼系数测定
{{custom_keyword}} /
Key words
structural vibration control /
electric eddy damper /
ideal viscous damper /
damping coefficient measurement
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨毅清,徐东东. 基于电涡流阻尼器的数控加工振动控制[J].振动与冲击,2016,35(4):177-187
Yang Yiqing,Xu Dongdong.Vibration suppression of NC machining based on eddy current dampers[J].Journal of vibration and Shock, 2016,35(4):177-187
[2] Mashhood A. B., Yiqing Yang, Xingzheng Pei, et al. Five-axis milling vibration attenuation of freeform thin-walled part by eddy current damping[J]. Precision Engineering, 51 (2018) 682–690
[3] 祝长生. 一种用于电磁轴承特性可控的弹性备用轴承[J]. 航空学报, 2010, 31(10):2087-2092
Zhu Changsheng.A Controllable Flexible Backup Bearing for Active MagneticBearings[J].Acta Aeronauticaet Astronautica Sinica, 2010, 31(10):2087-2092
[4] 李斌,牛文超,徐兆懿.电涡流耗能动力吸振器设计与试验研究[J]. 西北工业大学学报,2016,34(1):18-23
Li Bin,Niu Wenchao,Xu Zhaoyi.Eddy Current Vibration Absorber Design and Experiments[J].Journal of Northwestern Polytechnical University, 2016,34(1):18-23
[5] Wang Zhihao, Chen Zhengqing, Wang Jianhui. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism[J]. Earthq Eng & Eng Vib, (2012) 11: 391-401
[6] 雷旭, 牛华伟, 陈政清, 等.大跨度钢拱桥吊杆减振的新型电涡流TMD开发与应用[J]. 中国公路学报, 2015,28(4):60-69.
Lei Xu,Niu Huawei,Chen Zhengqing,et al.Development and Application of a New-type Eddy Current TMD for Vibration Control of Hangers of Long-span Steel Arch Bridges[J].China Journal of Highway and Transport, 2015,28(4):60-69.
[7] Zheng Lu, Biao Huang, Qi Zhang, et al. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations[J]. Journal of sound and vibration, 2018, 421:153-165
[8] S.K.Cheah, H.A.Sodano. Novel eddy current damping mechanism for passive magnetic bearings[J]. Journal of Vibration and Control,2008, 14(11):1749-1766.
[9] 陈政清,田静莹,黄智文,等. 板式电涡流阻尼系数的计算与试验修正方法[J]. 中国公路学报, 2016, 29(10):46-53.
Chen Zhenqing, Tian Jingying, Huang Zhiwen, et al. Calculation and Test Correction Method of Plane Type Eddy Current Damping Coefficient[J]. China Journal of Highway and Transport, 2016, 29(10):46-53.
[10] 汪志昊, 张闯, 周佳贞, 等. 新型装配式竖向电涡流TMD试验研究[J]. 振动与冲击, 2017,36(1):16-23
Wang Zhihao, Zhang Chuang,Zhou Jiazhen, et al. Tests for a prefabricated vertical TMD with eddy-current damping[J]. Journal of vibration and Shock, 2017,36(1):16-23
[11] J.G. Detoni , Q. Cui , N. Amati ,et al. Modeling and evaluation of damping coefficient of eddy current dampers in rotor dynamic applications[J]. Journal of sound and vibration, 2016,373: 52-65
[12] Xiang Shi, Songye Zhu. Simulation and optimization of magnetic negative stiffness dampers[J]. Sensors and Actuators A,2017, 259:14-33
[13] 肖登红, 潘强, 何田. 一种新型电涡流阻尼器及阻尼性能研究[J]. 噪声与振动控制, 2014, 34 (6):197-201
Xiao Denghong, Pan Qiang, He Tian.Design and Analysis of a Novel Eddy Current Damper[J]. Noise and Vibration Control, 2014, 34 (6):197-201
[14] 宋伟宁,徐 斌. 上海中心大厦新型阻尼器效能与安全研究[J]. 建筑结构,2016,46(1):1-8
Song Weining, Xu Bin. Research on performance and safety of innovated damper for shanghai tower[J]. Building Structure, 2016,46(1):1-8
[15] Jae-Sung Bae, Jai-Hyuk Hwang, Jung-Sam Park, et al. Modeling and experiments on eddy current damping caused by a permanent magnet in a conductive tube[J]. Journal of Mechanical Science and Technology, 23 (2009) 3024-3035
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}