混合润滑状态下结合面的法向接触刚度研究

李玲,裴喜永,史小辉,李治强,蔡安江

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 16-23.

PDF(1179 KB)
PDF(1179 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 16-23.
论文

混合润滑状态下结合面的法向接触刚度研究

  • 李玲,裴喜永,史小辉,李治强,蔡安江
作者信息 +

Normal contact stiffness of machine joint surfaces under mixed lubrication state

  • LI Ling,  PEI Xiyong,  SHI Xiaohui, LI Zhiqiang,   CAI Anjiang
Author information +
文章历史 +

摘要

针对润滑条件下机械结合面的接触特性受油膜影响的问题,基于结合面接触刚度由油膜接触刚度和固体表面接触刚度组成的思想,建立混合润滑状态下结合面的法向接触刚度模型。采用三维的Weierstrass-Mandelbrot函数获得具有分形特征的粗糙表面,并基于统计学方法建立干摩擦条件下结合面的法向接触刚度模型,考虑了微凸体的完全弹性变形、弹塑性变形以及完全塑性变形过程。在此基础上,求解了油膜的等效厚度并建立油膜的接触刚度模型。结果表明:结合面的法向接触刚度随法向载荷的增加而增加,且混合润滑状态下结合面的接触刚度大于干摩擦条件下结合面的接触刚度;该模型避免了油膜厚度测量难的问题,为机械结构的润滑状态预测提供了帮助。

Abstract

Aiming at the problem of contact characteristics of machine joint surfaces being affected by oil film under lubrication conditions, based on the idea of a joint surface’s contact stiffness consisting of oil film contact stiffness and solid surface contact stiffness, the joint surface’s normal contact stiffness model was established under mixed lubrication state.The 3-D Weierstrass-Mandelbrot function was used to obtain a rough surface with fractal feature to build a joint surface’s normal contact stiffness model under dry friction condition using the statistics method and considering a micro-convex body’s full elastic deformation process, elastoplastic one and full plastic one.Furthermore, the equivalent thickness of an oil film was solved and its contact stiffness model was built.The results showed that a joint surface’s contact stiffness increases with increase in normal load; a joint surface’s contact stiffness under mixed lubrication state is larger than that under dry friction condition; the proposed model avoids the problem of measuring oil film’s thickness being difficult and provides a help for predicting lubrication state of mechanical structures.

关键词

机械结合面 / 混合润滑 / 等效厚度 / 法向接触刚度 / 分形理论

Key words

machine joint surface / mixed lubrication / equivalent thickness / normal contact stiffness / fractal theory

引用本文

导出引用
李玲,裴喜永,史小辉,李治强,蔡安江. 混合润滑状态下结合面的法向接触刚度研究[J]. 振动与冲击, 2020, 39(3): 16-23
LI Ling, PEI Xiyong, SHI Xiaohui, LI Zhiqiang, CAI Anjiang. Normal contact stiffness of machine joint surfaces under mixed lubrication state[J]. Journal of Vibration and Shock, 2020, 39(3): 16-23

参考文献


参考文献
 [1] Chiu H, Lee C. Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach[J]. Advances in Engineering Software. 2017, 114: 246-257.
 [2] Yuan Y, Cheng Y, Liu K, et al. A revised Majumdar and Bushan model of elastoplastic contact between rough surfaces[J]. Applied Surface Science. 2017, 425: 1138-1157.
 [3] Zhao L, Zhang M, He Y, et al. A new method for modeling rough membrane surface and calculation of interfacial interactions[J]. Bioresource Technology. 2016, 200(2): 451-457.
 [4] Song H, Giessen E V D, Liu X. Strain gradient plasticity analysis of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics & Physics of Solids. 2016, 96: 18-28.
 [5] Clausnizer H, Fidlin A, Figuli R, et al. Experimental investigation of the permeability of a tribo-contact in dry friction clutches[J]. Tribology International. 2017, 118: 157-162.
 [6] Eid H, Adams G G. An elastic plastic finite element analysis of interacting asperities in contact with a rigid flat[J]. Journal of Physics D: Applied Physics. 2007, 40(23): 7432.
 [7] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London. 1966, 295(1442): 300-319.
 [8] Jackson R L, Green I. A statistical model of elasto-plastic asperity contact between rough surfaces[J]. Tribology International. 2006, 39(9): 906-914.
 [9] Medina S, Nowell D, Dini D. Analytical and numerical models for tangential stiffness of rough elastic contacts[J]. Tribology Letters. 2013, 49(1): 103-115.
[10] Sayles R S, Thomas T R. Surface topography as a nonstationary random process[J]. Nature. 1978, 271(5644): 431-434.
[11] Mandelbrot B B. The fractal geometry of nature.[M]. W.H. Freeman, 1983: 468.
[12] Mandelbrot B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metal[J]. Nature. 1984, 308(5961): 721-722.
[13] Majumdar A. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. Trans Asme J Tribology. 1990, 112(2): 205-216.
[14] Majumdar A, Bhushan B. Fractal model of Elastic-Plastic contact between rough surfaces[J]. Journal of Tribology-Transactions of the Asme. 1991, 113(1): 1-11.
[15] Yan W, Komvopoulos K. Contact analysis of elastic-plastic fractal surfaces[J]. Journal of Applied Physics. 1998, 84(7): 3617-3624.
[16] 杨红平,傅卫平,王雯,等. 基于分形几何与接触力学理论的结合面法向接触刚度计算模型[J]. 机械工程学报. 2013, 49(1): 102-107.
YANG Hong-ping, FU Wei-ping, WANG Wen, et al. Calculation model of the normal contact stiffness of joints based on the fractal geometry and contact theory[J]. Journal of Mechanical Engineering. 2013, 49(1): 102-107.
[17] 李玲,蔡安江,蔡力钢,等. 螺栓结合面微观接触模型[J]. 机械工程学报. 2016, 52(7): 205-212.
LI Ling, CAI An-jiang, CAI Li-gang, et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering. 2016, 52(7): 205-212.
[18] Liu J, Shao Y. An improved analytical model for a lubricated roller bearing including a localized defect with different edge shapes[J]. Journal of Vibration & Control. 2018, 24(17): 3894-3907.
[19] Gonzalez-Valadez M, Dwyer-Joyce R S, Lewis R. Ultrasonic reflection from mixed Liquid-Solid contacts and the determination of interface stiffness[J]. Tribology & Interface Engineering. 2005, 48(05): 313-320.
[20] Tattersall H G. The ultrasonic pulse-echo technique as applied to adhesion testing[J]. Journal of Physics D Applied Physics. 1973, 6(7): 819.
[21] Chang W R. An Elastic-Plastic model for the contact of rough surfaces[J]. Journal of Tribology. 1987, 109(2): 257-263.
[22] 赵永武,吕彦明,蒋建忠. 新的粗糙表面弹塑性接触模型[J]. 机械工程学报. 2007, 43(3): 95-101.
ZHAO Yong-wu, L(U) Yan-ming, JIANG Jian-zhong. New elastic-plastic model for the contact of rough surfaces[J]. Journal of Mechanical Engineering. 2007, 43(3): 95-101.
[23] Chang W R, Etsion I, Bogy D B. Static friction coefficient model for metallic rough surfaces[J]. Journal of Tribology. 1988, 110(1): 57-63.
[24] Tian H L, Zheng J H, Zhao C H, et al. Calculating method of surface dissipation factor and normal damping[J]. Journal of Shanghai Jiaotong University. 2015, 49(5): 687-694.
[25] Dwyer-Joyce R S, Harper P, Drinkwater B W. A method for the measurement of hydrodynamic oil films using ultrasonic reflection[J]. Tribology Letters. 2004, 17(2): 337-348.
[26] Pan W, Li X, Wang L, et al. A normal contact stiffness fractal prediction model of dry-friction rough surface and experimental verification[J]. European Journal of Mechanics - A/Solids. 2017, 66: 94-102.
 
 

PDF(1179 KB)

522

Accesses

0

Citation

Detail

段落导航
相关文章

/