基于流固耦合的管道双车振动运移水力特性研究

张春晋1,2,孙西欢2,3,李永业2,张学琴4,张雪兰2,杨小妮2,5,李飞2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 161-167.

PDF(2586 KB)
PDF(2586 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 161-167.
论文

基于流固耦合的管道双车振动运移水力特性研究

  • 张春晋1,2,孙西欢2,3,李永业2,张学琴4,张雪兰2,杨小妮2,5,李飞2
作者信息 +

Hydraulic characteristics of a piped double-carriage’s vibrational transport based on fluid-structure interaction

  • ZHANG Chunjin1,2, SUN Xihuan2,3, LI Yongye2, ZHANG Xueqin4, ZHANG Xuelan2, YANG Xiaoni2,5, LI Fei2
Author information +
文章历史 +

摘要

为了探究流固偶合作用对筒装料管道水力运输流场水力特性的影响,采用商用ANSYS Fluent 12.0软件对管道流场和管道双车结构响应进行联合求解,并分析管道双车在平直管道振动运移的水力特性。管道流场计算采用雷诺时均动量方程和RNG k-ε湍流模型,管道双车结构响应计算采用刚体运动方程。结合模型试验,分析轴向流速及测压管水头,并将模拟结果与试验结果对比。结果表明:模拟结果与试验结果一致,最大相对误差不超过5.36%,说明采用流固耦合方法求解管道双车在平直管道振动运移的水力特性是可行的;管道双车瞬时速度与间距均在微小范围内呈不规则振动变化,可将管道双车振动运移视为恒定运动。

Abstract

In order to study effects of fluid-structure interaction on hydraulic characteristics of a pipeline hydraulic transportation flow field for conveying raw material contained in it, a dynamic model for flow field and a piped double-carriage coupled system was established and solved using the commercial software ANSYS Fluent 12.0 to analyze hydraulic characteristics of vibrational transport of a piped double-carriage within horizontal and straight pipelines.The flow field calculation within pipelines was based on Reynolds time-averaged momentum equations and RNG k-ε turbulent model, while dynamic response calculation of the piped double-carriage was done with rigid-body dynamic equations.Combining with model tests, axial velocity distributions and piezo-metric heads were analyzed.Simulated results were compared with test ones.The results showed that simulated results are consistent to test ones, the maximum relative error doesn’t exceed 5.36%,  so using the fluid-structure interaction method to solve hydraulic characteristics of vibrational transport of the piped double-carriage within horizontal and straight pipelines is feasible; instantaneous speed and spacing of the piped double-carriage reveal irregular  fluctuation within a micro-range, respectively, so vibrational transport of the piped double-carriage can be regarded as a constant motion.

关键词

振动运移 / 管道双车 / 水力特性 / 流固耦合 / 模型试验 / 6DOF耦合模型

Key words

vibrational transport / piped double-carriage / hydraulic characteristics / fluid-structure interaction / model test / 6-DOF coupled model

引用本文

导出引用
张春晋1,2,孙西欢2,3,李永业2,张学琴4,张雪兰2,杨小妮2,5,李飞2. 基于流固耦合的管道双车振动运移水力特性研究[J]. 振动与冲击, 2020, 39(3): 161-167
ZHANG Chunjin1,2, SUN Xihuan2,3, LI Yongye2, ZHANG Xueqin4, ZHANG Xuelan2, YANG Xiaoni2,5, LI Fei2. Hydraulic characteristics of a piped double-carriage’s vibrational transport based on fluid-structure interaction[J]. Journal of Vibration and Shock, 2020, 39(3): 161-167

参考文献

[1]  李永业,孙西欢,李  飞,等. 不同型号的管道车在管道中运移的水力特性[J].排灌机械工程学报,2010, 28(02): 174-178.
LI Yong-ye, SUN Xi-huan, LI Fei, et al. Hydraulic characteristics of transportation of different piped carriage[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(02): 174-178.
[2]  KRUYER J., SNYDER W T. Relationship between capsule pulling force and pressure gradient in a pipe[J]. Canadian Journal of Chemical Engineering, 1975, 53(04): 378-383.
[3]  王  锐,孙西欢,李永业. 管道车在不同雷诺数条件下的输送特性[J]. 排灌机械工程学报,2011, 29(04): 343-346+358.
WANG Rui, SUN Xi-huan, LI Yong-ye. Transportation characteristics of piped carriage with different Reynolds numbers[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(04): 343-346+358.
[4]  黄莹彬,李永业,孙西欢,等. 不同体表比管道车运移时的水力特性研究[J]. 人民长江,2018, 49(02): 104-108.
HUANG Ying-bin, LI Yong-ye, SUN Xi-huan, et al. Hydraulic characteristics of piped carriage transportation with different body - surface ratio[J]. Yangtze River, 2018, 49(02): 104-108.
[5]  OHASHI A., YANAIDA K. The fluid mechanics of capsule pipelines: 1st Report, analysis of the required pressure drop for hydraulic and pneumatic capsules[J]. Bulletin of Jsme, 1986, 29(252): 1719-1725.
[6]  LATTO B., CHOW K W. Hydrodynamic transport of cylindrical capsules in a vertical pipeline[J]. Canadian Journal of Chemical Engineering, 1982, 60(06): 713-722.
[7]  张雪兰,孙西欢,李永业. 筒装料管道水力输送动边界流压力特性[J]. 排灌机械工程学报,2014, 32(03): 231-234+241.
ZHANG Xue-lan, SUN Xi-huan, LI Yong-ye. Pressure characteristics of flow induced by moving cylindrical capsules in hydraulic capsule transportation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(03): 231-234+241.
[8]  井元昊,郭向红,孙西欢,等. 管道车环状缝隙流水力特性[J]. 水电能源科学,2014, 32(07): 151-155.
JING Yuan-hao, GUO Xiang-hong, SUN Xi-huan, et al. Hydraulic characteristics of cyclical flow for piped carriage[J]. Water Resources and Power, 2014, 32(07): 151-155.
[9]  GOVIER G W., AZIZ K., SCHOWALTER W R. The Flow Complex Mixtures in Pipes[J]. Journal of Applied Mechanics, 1972, 40(02): 404.
[10] 李永业,孙西欢,许飞. 基于FLOW-3D的筒装料管道水力输送数值模拟[J]. 系统工程理论与实践,2013, 33(01): 262-266.
LI Yong-ye, SUN Xi-huan, XU Fei. Numerical simulation on the piped hydraulic transportation of tube-contained raw material based on FLOW-3D[J]. Systems Engineering- Theory & Practice, 2013, 33(01): 262-266.
[11] KHALIL M F., KASSAB S Z., ADAM I G., et al. Turbulent flow around single concentric long capsule in a pipe[J]. Applied Mathematical Modelling, 2010, 34(08): 2000-2017.
[12] ASIM T., MISHRA R. Computational fluid dynamics based optimal design of hydraulic capsule pipelines transporting cylindrical capsules[J]. Powder Technology, 2016, 295(07): 180-201.
[13] LENAU C W., EL-BAYYA M M. Unsteady flow in hydraulic capsule pipeline[J]. Journal of Engineering Mechanics, 1996, 122: 1168-1173.
[14] OGAWA K., ITO S., KURODA C. Laminar-turbulent velocity profile transition for flows in concentric annuli, parallel plates and pipes[J]. Journal of Chemical Engineering of Japan, 1980, 13(03): 183-188.
[15] 张春晋. 不同直径的管道车在平直管段内运移时的水力特性模拟研究[D]. 太原理工大学,2015.
ZHANG Chun-jin. The simulation research on hydraulic characteristics of moving piped carriage with different diameter at horizontal pipeline[J]. Taiyuan University of Technology, 2015.
[16] 荆丰梅,肖  钢,熊志民. 潮流能水轮机单向流固耦合计算方法[J]. 振动与冲击,2013, 32(08): 91-95+104.
JING Feng-mei, XIAO Gang, XIONG Zhi-min. Calculation method of fluid and structure interaction in a vertical-axis tidal current turbine[J]. Journal of Vibration and Shock, 2013, 32(08): 91-95+104.
[17] 张春晋,孙西欢,李永业,等. 螺旋流起旋器内部流场水力特性数值模拟与验证[J]. 农业工程学报,2018, 34(1): 53-62.
ZHANG Chun-jin, SUN Xi-huan, LI Yong-ye, et al. Numerical simulation and verification of hydraulic characteristics of internal flow field in spiral flow generator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 53-62.
[18] ZHANG W J., MA J., WANG P P., et al. Investigations on the interfacial capacitance and the diffusion boundary layer thickness of ion exchange membrane using electrochemical impedance spectroscopy[J]. Journal of Membrane Science, 2016, 502: 37-47.
[19] 袁建平,夏水晶,宗伟伟,等. 基于流固耦合的离心泵启动过程瞬态叶片动应力特性[J]. 振动与冲击,2016, 35(12): 196-201.
YUAN Jian-ping, XIA Shui-jing, ZONG Wei-wei, et al. Transient stress characteristic during centrifugal pumps start-up based on fluent-structure interaction[J]. Journal of Vibration and Shock, 2016, 35(12): 196-201.
[20] 朱世权,李海元,陈志华,等. 基于双向流固耦合的机载导弹分离动力学研究[J]. 工程力学,2017, 34(10): 217-228.
ZHU Shi-quan, LI Hai-yuan, CHEN Zhi-hua, et al. Numerical investigations on missile separation of an aircraft based on CFD/CSD two-way coupling method[J]. Engineering Mechanics, 2017, 34(10): 217-228.
[21] 张春晋,孙西欢,李永业,等. 流固耦合作用对筒装料管道车水力输送内部流场特性的影响[J]. 农业工程学报,2018,34(18): 299-307.
ZHANG Chun-jin, SUN Xi-huan, LI Yong-ye, et al. Effect of fluid-structure interaction on internal flow field characteristics of tube-contained raw material pipeline hydraulic transportation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18): 299-307.
 
 

PDF(2586 KB)

403

Accesses

0

Citation

Detail

段落导航
相关文章

/