为分析单裂纹或多裂纹在裂纹面承受疲劳拉伸载荷作用下尖端应力强度因子变化规律和裂纹形貌变化以及疲劳寿命情况,以含不同初始长深比的半椭圆单裂纹或双裂纹的薄片试样为研究对象,对试样在应力比R=0.1的疲劳拉伸载荷下单裂纹或双裂纹情况进行了仿真分析。建立含裂纹试样的有限元模型,仿真分析了裂纹在扩展过程中尖端应力强度因子的分布情况,并将单裂纹扩展结果与双裂纹相互作用影响下的结果进行了对比研究;进行含裂纹试样的疲劳实验,分析了含单裂纹或双裂纹的试样的断裂面的形成原因,并验证仿真结果正确性。结果表明,裂纹面之间的相互作用会逐渐影响裂纹的扩展方向、扩展速率以及在扩展过程中
Abstract
To analyze varying laws of crack tip stress intensity factor, crack morphology and fatigue life of single crack and multi-crack on 15MnMoVN steel specimens under fatigue tensile load exerted on crack surface, taking 15MnMoVN steel sheet samples containing semi-elliptic single crack or multi-crack with various initial length-to-depth ratios as study objects, simulation analyses were performed for crack propagation of these single crack and multi-crack on these sheet samples under fatigue tensile load with stress ratio R=0.1.The FE model for samples containing cracks was built, and tip stress intensity factor’s distribution was simulated in process of crack propagation.The propagation results of single-crack were compared with those under effects of double-crack interaction.The fatigue tests were done for samples containing cracks to analyze the forming reason of fracture plane on samples containing single crack or double-crack, and verify the correctness of simulation results.The results indicated that interaction between cracks can gradually affect crack propagation direction, propagation rates and varying trend of tip stress intensity factor in propagation process; an initial semi-elliptic double-crack can gradually transit to a semi-circle one under effects of interaction between two cracks.
关键词
断裂力学 /
疲劳裂纹 /
有限元 /
裂纹扩展 /
应力强度因子
{{custom_keyword}} /
Key words
fracture mechanics /
fatigue crack /
finite element (FE) /
crack propagation /
stress intensity factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
参考文献
[1] 喻健良,闻拓,闫兴清,等. 直管外表面轴向半椭圆裂纹应力强度因子K的有限元分析[J]. 化工装备技术. 2012, 33(01): 10-13.
YU Jianliang, WEN Tuo, YAN Xingqing, el al. Finite element analysis of stress intensity factor for straight pipe's axial semi-elliptical external surface cracks[J]. Chemical Equipment Technology. 2012, 33(01): 10-13.
[2] 梁光川,李抗抗. 裂纹倾角对管道表面裂纹断裂参数的影响[J]. 油气储运. 2017, 36(06): 689-693.
LIANG Guangchuan, LI Kangkang. Effect of crack angle on the fracture parameter of pipeline surface crack. 2017, 36(06): 689-693.
[3] 白杨. 带有环向内裂纹的薄壁钢管结构断裂力学计算分析[J]. 兰州理工大学学报. 2014, 40(05): 169-172.
BAI Yang. Fracture mechanics-based evaluation and analysis of thin-walled steel tubular structure with interior circumferential cracks[J]. Journal of Lanzhou University of Technology. 2014, 40(05): 169-172.
[4] 王爱勤,秦太验. 带轴向表面裂纹海洋管道的断裂计算与可靠性评估[J]. 机械强度. 2009, 31(01): 144-149.
WANG Aiqin, QIN Taiyan. Fracture and reliability assessment on submarine pipelines with axial surface cracks[J]. Journal of Mechanical Strength. 2009, 31(01): 144-149.
[5] 郦正能,关志东. 应用断裂力学[M]. 北京:北京航空航天大学出版社,2012:111-112.
LI Zhengneng, GUAN Zhidong. Applied fracture mechanics[M]. Beijing: Beijing University of Aeronautics and Astronautics Press,2012: 111-112.
[6] 署恒木. 薄壁管道表面裂纹的应力强度因子计算[J]. 油气储运. 2001, 20(03): 25-28.
SHU Hengmu. Stress intensity factors for surface cracks in thin pipes[J]. Oil & Gas Storage and Transportation. 2001, 20(03): 25-28.
[7] KISABURO A, YIN L. Interaction factors for two elliptical embedded cracks with a wide range of aspect ratios [J]. The International Journal of Pressure Vessels and Piping. 2017, 4(2): 328-339.
[8] 姚安林,胡益平,曾祥国等. 高压输气管道内裂纹相互作用的有限元数值分析[J]. 压力容器. 2011, 28(03): 28-32.
YAO Anlin, HU Yiping, ZENG Xiangguo, et al. Finite element numerical analysis of multiple interacting cracks in high pressure gas pipeline[J]. Pressure Vessel Technology. 2011, 28(03): 28-32.
[9] 岳应娟,李宁,陈飞等. 埋藏裂纹应力强度因子的有限元分析[J].武汉科技大学学报.2015, 38(02): 125-128.
YUE Yingjuan, LI Ning, CHEN Fei, el at. Finite element analysis of stress intensity factor of embedding cracks[J]. Journal of Wuhan University of Science Technology. 2015, 38(02): 125-128.
[10] Zareei A, Nabavi S M. Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes[J]. International Journal of Pressure Vessels and Piping. 2016, 146: 32-38.
[11] 于桂杰,董校峰,李建文. 直管道外表面斜裂纹应力强度因子有限元分析[J]. 石油矿场机械. 2016(02): 26-31.
YU Guijie, DONG Xiaofeng, LI Jianwen, el at. Finite element analysis of stress intensity factor for straight pipe’s oblique external surface cracks[J]. Oil Field Equipment. 2016, 45(02): 26-31.
[12] 余建星,郭帅,吴朝辉. 含双裂纹缺陷海底管道疲劳寿命的分析[J]. 中国海洋平台. 2016,31(04): 66-72.
YU Jianxing, GUO Shuai, WU Chaohui, el at. Finite element analysis of stress intensity factor for straight pipe’s oblique external surface cracks[J]. Oil Field Equipment. 2016, 45(02): 26-31.
[13] 白鑫,谢里阳. 两裂纹在核管道中应力强度因子的相互影响研究[J]. 核科学与工程. 2015, 35(01): 174-180.
BAI Xin, XIE Liyang. The stress intensity factor variation of two cracks interaction in nuclear piping[J]. Nuclear Science and Engineering. 2015, 35(01): 174-180.
[14] 余建星,郭帅,余杨,等. 裂纹参数对深水海底管道疲劳寿命的影响[J]. 天津大学学报(自然科学与工程技术版). 2016, 49(09): 889-895.
YU Jianxing, Guo Shuai, Yu Yang. Effects of crack parameters on fatigue life of subsea pipelines[J]. Journal of Tianjin University(Science and Technology). 2016(09): 889-895.
[15] Zareei A, Nabavi S M. Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes[J]. International Journal of Pressure Vessels and Piping. 2016, 146: 32-38.
[16] YIN LI, KUNIO H, MAKOTO U. Development of Stress Intensity Factors for Cracks With Large Aspect Ratios in Pipes and Plates [J]. Journal of Pressure Vessel Technology. 2016, 139(2): 202-210.
[17] S.M.NABAVI, A.R.SHAHANI. Calculation of stress intensity factors for a longitudinal semi-elliptical crack in a finite-length thick-walled cylinder[J]. Fatigue and Fracture of Engineering Materials and Structures. 2008, 31(1): 85-94.
[18] J.C.NEWMAN, I.S.RAJU. Stress-Intensity Factors for Internal Surface Cracks in Cylindrical Pressure Vessels [J]. Journal of pressure vessel technology. 1980, 102(4): 342-346.
[19] J.C.NEWMAN, I.S.RAJU. An Empirical Stress-Intensity Factor Equation for the Surface Crack[J]. Engineering Fracture Mechanics. 1981, 15(1-2): 185-192.
[20] 刘城志,岳应娟,陈飞. 一种基于FRANC3D的高压气瓶安全性评定的新方法[J]. 铸造技术. 2012(06): 685-687.
LIU Chengzhi, YUE Yingjuan, CHEN Fei. New method to assess safety of high-pressure cylinder based on FRANC 3D[J]. Foundry Technology. 2012(06): 685-687.
[21] 艾书民,于明,成晓鸣. 基于Franc3D软件的三维裂纹扩展分析与应用[J]. 机械强度. 2018(01): 251-254.
AI Shumin, YU Ming, CHENG Xiaoou. Analysis and application of three-dimensional crack growth based on Franc3D[J]. Mechanical Strength. 2018(01): 251-254.
[22] 刘兵吉,常新龙,李世望. 15MnMoVN钢及焊件的裂纹扩展速率的实验研究[J]. 机械强度. 1989(04): 64-68.
LIU Bingji, CHANG Xinlong, LI Shiwang. Experiment and study of fatigue crack propagation rate of 15MnMoVN steel and welds[J]. Mechanical Strength. 1989(04): 64-68.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}