高刚度高阻尼结构试验研究

刘海平1,2,丁峰1,马涛1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 186-192.

PDF(1376 KB)
PDF(1376 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 186-192.
论文

高刚度高阻尼结构试验研究

  • 刘海平1,2,丁峰1,马涛1
作者信息 +

Tests for a high stiffness and high damping structure

  • LIU Haiping1,2, DING Feng1, MA Tao1
Author information +
文章历史 +

摘要

利用预置变形碳纤维梁、螺旋弹簧、碟簧和橡胶块构成一种高刚度高阻尼结构,其承载刚度和阻尼均较大。为了便于对高刚度高阻尼结构的力学性能进行评价,提出技术指标,即:等效弹性模量、等效阻尼系数和等效刚度系数。在此基础上,设计静动态力学试验,验证高刚度高阻尼结构设计方法的有效性并评价其力学性能。试验结果表明,高刚度高阻尼结构的等效弹性模量显著大于单个预置变形碳纤维梁;等效阻尼系数随着频率增大而减小,等效刚度系数随着频率增大而增大,分别大于104 Ns/m和107 N/m。由此证明,高刚度高阻尼结构的设计方法有效,且实现了输出刚度和阻尼均较大的设计目标。

Abstract

A single pre-deformed carbon fiber beam, helical springs, disc springs and viscoelastic rubber blocks were used to form a high stiffness and high damping structure.Its bearing stiffness and damping were larger.In order to conveniently evaluate the mechanical performance of this structure, 3 technical indexes including equivalent elastic modulus, equivalent damping coefficient and equivalent stiffness coefficient were proposed to design its static and dynamic tests, verify the effectiveness of its design method and evaluate its mechanical performance.The test results showed that the equivalent elastic modulus of this structure is much larger than that of a single pre-deformed carbon fiber beam; with increase in excitation frequency, its equivalent damping coefficient decreases, while its equivalent stiffness increases, they are larger than 104 Ns/m and 107 N/m, respectively; so the design method for this structure is effective to realize the design goal of larger output stiffness and output damping.

关键词

高刚度高阻尼 / 结构 / 试验研究

Key words

high stiffness and high damping / structure / test

引用本文

导出引用
刘海平1,2,丁峰1,马涛1. 高刚度高阻尼结构试验研究[J]. 振动与冲击, 2020, 39(3): 186-192
LIU Haiping1,2, DING Feng1, MA Tao1. Tests for a high stiffness and high damping structure[J]. Journal of Vibration and Shock, 2020, 39(3): 186-192

参考文献

[1] LIANG D., Lakes R. Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness [J]. International Journal of Solids and Structures, 2013, 50: 2416-2423.
[2] 王超新, 孙靖雅, 张志谊等. 最优阻尼三参数隔振器设计和试验 [J]. 机械工程学报, 2015, 51(15): 90-96.
WANG C.X., SUN J.Y., ZHANG Z.Y., et al. Design and experiment of a three-parameter isolation system with optimal damping[J]. Journal of Mechanical Engineering, 2015, 51(15): 90-96.
[3] 严济宽. 机械振动隔离技术 [M]. 上海:上海科学技术文献出版社, 1986.
YAN Jikuan. Mechanical vibration isolation [M]. Shanghai:Science and Technology Documents Press of Shanghai, 1986.
[4] IBRAHIM R.A. Recent advances in nonlinear passive vibration isolators [J]. Journal of Sound and Vibration, 2008, 314: 371-452.
[5]  PREUMONT A. Vibration control of active structures [M]. Kluwer Academic Publishers, 2004.
[6] ZHOU N, LIU K. A tunable high-static–low-dynamic stiffness vibration isolator [J]. Journal of Sound and Vibration, 2010, 329(9): 1254-1273.
[7] 严鲁涛, 李红, 丁洋等. 整星减冲击装置设计及试验研究 [J]. 振动与冲击, 2017, 36(14): 138-141.
YAN Lutao, LI Hong, DING Yang, et al. Design and test for the shock isolation structure of a whole spacecraft [J]. Journal of Vibration and Shock, 2017, 36(14): 138-141.
[8] 王超新, 刘兴天, 张志谊. 基于立方体Stewart的微振动主动控制分析与实验 [J]. 振动与冲击, 2017, 36(5): 208-213.
WANG Chaoxin, LIU Xingtian, ZHANG Zhiyi. Micro-vibration active control for a Stewart platform with a cubic configuration [J]. Journal of Vibration and Shock, 2017, 36(5): 208-213.
[9] Antoniadis I., Chronopoulos D., Spitas V., et al. Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness [J]. Journal of Sound and Vibration, 2016, 346: 37-52.
[10] Antoniadis I., Konstantinos J., Evangelos G.. Hyper-damping behavior of stiff and stable oscillators with embedded statically unstable stiffness elements [J]. International Journal of Structural Stability and Dynamics, 2017, 17(5): 1740008-1-15.
[11] J.S. Yang, L. Ma, R. Schmidt, et al. Hybrid lightweight composite pyramidal truss sandwich panels with high damping and stiffness efficiency [J]. Composite Structures, 2016, 148: 85-96.
[12] 董光旭, 张希农, 谢石林等. 基于负刚度机构的高刚度-超阻尼隔振器设计与研究 [J]. 振动与冲击, 2017, 36(9): 239-246.
DONG Guangxu, ZHANG Xinong, XIE Shilin, et al. Design of a high stiffness and hyper-damping vibration isolator based on negative stiffness mechanism [J]. Journal of Vibration and Shock, 2017, 36(9): 239-246.
[13] 刘海平, 赵云鹏, 史文华. 一种航天器级间适配结构 [P]. 中国发明专利, 2018, CN201610269455.

PDF(1376 KB)

Accesses

Citation

Detail

段落导航
相关文章

/