地表峰值加速度PGA是工程地震预警、烈度速报及结构抗震设计的重要指标参数。搜集整理日本Kik-net台网的地震记录,以我国抗震规范中采用的场地覆盖层厚度D和等效剪切波速Vse为场地特征参数,以基岩加速度峰值PBA为输入地震动强度指标,基于分类回归树CART算法,建立了以地表PGA阈值分别为40 gal、80 gal及120 gal的场地条件修正的地震动预警方法,并给出了参数指标的取值范围。通过对搜集的数据进行回判检验,3种地震强度下总体预警成功率分别为84.7%、90.1%和93.6%。采用我国川滇地区强震数据验证该方法的可靠性,结果显示总体成功率分别为88.4%、92.3%和93.4%。
Abstract
Peak ground acceleration (PGA) is an important index for earthquake early warning, intensity quick report and structural aseismic design.Here, earthquake records of KiK-net in Japan were collected and arranged.The site cover thickness D and equivalent shear wave velocity Vse adopted in our country’s aseismic code were taken as site characteristic parameters, and peak bedrock acceleration (PBA) was taken as input earthquake dynamic strength index, based on the classification and regression tree (CART) method, a ground motion early warning method considering site condition correction under PGA’s thresholds of 40 gal, 80 gal and 120 gal, respectively was proposed, and ranges of parameter indexes were given.Through check-back tests for the data collected from KiK-net in Japan, it was shown that the total earthquake early warning success rates are 84.7%, 90.1% and 93.6% corresponding to PGA values of 40 gal, 80 gal or 120 gal, respectively.The strong earthquake data collected in our country’s Sichuan and Yunnan areas were used to verify the reliability of the proposed method, the results showed that the total earthquake early warning success rates are 88.4%, 92.3% and 93.4%, respectively under 3 seismic intensities mentioned above.
关键词
地震预警 /
场地特征参数 /
回归决策树CART /
地震动 /
快速评估
{{custom_keyword}} /
Key words
earthquake early warning /
site characteristic parameters /
CART /
ground motion /
fast assessment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙 利,钟 红,林 皋. 高速铁路地震预警系统现状综述[J]. 世界地震工程,2011,27(3): 89-96.
Sun Li, Zhong Hong, Lin Gao. An overview of earthquake early warning systems for high speed railways and its application to Beijing-Shanghai high speed railway[J]. World Earthquake Engineering, 2011, 27(3): 89-96.
[2] Wu Y M. Experiment on an onsite early warning method for the Taiwan early warning system[J]. Bulletin of the Seismological Society of America, 2005, 95(1): 347-353.
[3] 宋晋东,教聪聪,李山有,侯宝瑞,汪源. 一种基于地震早期辐射P波能量的高速铁路Ⅰ级地震警报预测方法[J]. 振动与冲击, 2018, 37(19): 14-22.
SONG Jindong, JIAO Congcong, LI Shanyou, HOU Baorui, WANG Yuan. A predicting method for magnitude 1 earthquake alarm of high-speed railways based on seismic early radiated P-wave energy. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(19): 14-22.
[4] Picozzi M, Zollo A, Brondi P, et al. Exploring the feasibility of a nationwide earthquake early warning system in Italy[J]. Journal of Geophysical Research Solid Earth, 2015, 120(4):2446-2465.
[5] 李小军.地震动参数区划图场地条件影响调整[J].岩土工程学报,2013,35(supp.2):21-29.
LI Xiaojun. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(supp.2): 21-29.
[6] 高永武,王 涛,戴君武,金 波. 不同场地条件下某新型核电厂房的地震响应试验研究[J]. 振动与冲击, 2017, 36(18): 214-222.
GAO Yongwu,WANG Tao,DAI Junwu,JIN Bo. Experimental research on seismic responses of a new type of nuclear power plant under different site conditions. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(18): 214-222.
[7] Bard P. Y. Local effects on strong ground motion: basic physical phenomena and estimation methods for microzoning studies[C]. Proceedings of the Advanced Study Course on Seismic Risk, 1997, Thessaloniki, Greece.
[8] 何文福,黄一沈,刘文光,刘文燕. 核电厂隔震结构支座力学性能多因素耦合地震响应研究[J]. 振动与冲击, 2018, 37(17): 72-78.
HE Wenfu,HUANG Yishen,LIU Wenguang,LIU Wenyan. Seismic responses of a nuclear plant isolated structure supported by rubber bearings with a multi-factor coupled mechanical model. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(17): 72-78.
[9] 袁晓铭,李瑞山,孙 锐. 新一代土层地震反应分析方法[J]. 土木工程学报,2016,49(10): 95-102.
Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102.
[10] 中华人民共和国国家标准. 建筑抗震设计规范GB50011-2010[S]. 北京:中国建筑工业出版社, 2010.
National Standard of the People’s Republic of China. Code for seismic design of buildings GB50011-2010[S]. Beijing: China Architecture and Building Press, 2010.
[11] 刘宇实,师黎静. 基于地脉动谱比法的场地特征参数快速测定[J]. 振动与冲击, 2018, 37(13): 235-242.
LIU Yushi, SHI Lijing. Site characteristic parameters’ quick measurement based on micro-tremor’s H/V spectra. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(13): 235-242.
[12] Kik-net强震记录, http://www.kyoshin.bosai.go.jp/
[13] 李程程,曹振中,李瑞山. 场地液化侧移等级判别标准及其可靠性分析[J]. 岩土工程学报,2016,38(9): 1668-1677.
Li Chengcheng, Cao Zhenzhong, Li Ruishan. Assessment criterion for level of liquefaction-induced lateral spread and its reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1668-1677.
[14] LEI Jian-cheng, GAO Meng-tan, YU Yan-xiang. Seismic motion atenuation relations in Sichuan and adjacent areas[J]. Acta Seismologica Sinica, 2007, 20(5): 532-543.
[15] 俞言祥,汪素云. 青藏高原东北地区水平向基岩加速度峰值与反应谱衰减关系[J]. 地震学报,2004,26(6): 591-600.
Yu Yanxiang, Wang Suyun. Attenuation relation for horizintal peak GRO-UND acceleration and response spectrum in northeastern Tibetan plateau region[J]. Acta Seismologica Sinica, 2004, 26(6): 591-600.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}