浸没式参数激励摆波能转换装置能量俘获特性研究

王彤彤1,2,肖龙飞1,2,杨立军1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 199-204.

PDF(1550 KB)
PDF(1550 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 199-204.
论文

浸没式参数激励摆波能转换装置能量俘获特性研究

  • 王彤彤1,2,肖龙飞1,2,杨立军1,2
作者信息 +

Energy capture feature of wave energy converter with submerged parametric excitation pendulum

  • WANG Tongtong1,2, XIAO Longfei1,2, YANG Lijun1,2
Author information +
文章历史 +

摘要

引入参数激励摆的非线性机制,应用于波浪能发电装置,并根据实际波浪低频、低幅值激励特性,提出浸没式单摆波能转换装置,研究其在规则波中的能量俘获情况。基于势流理论,针对垂荡运动,建立非线性运动方程,进行数值求解,分析摆球质量比、激励频率、幅值和系统阻尼对能量俘获效率的影响,并与空气中单摆的能量俘获效率进行对比。结果表明:合理选取质量比,可降低浸没式参数激励摆固有频率;与空气中单摆相比,浸没式参数激励摆在低频、小振幅的波浪激励环境下,俘获能量频谱带宽更宽,发电功率更高。

Abstract

Here, the nonlinear mechanism of a parametrically excited pendulum was introduced and applied in wave energy converters.According to real wave’s excitation features of low frequency and small amplitude, a submerged simple pendulum wave energy converter was proposed to study its energy capture law in regular wave.Based on the potential flow theory, the nonlinear equation of motion for swing motion was built and solved numerically.Effects of pendulum ball mass ratio, excitation frequency and amplitude as well as system damping on energy capture efficiency were analyzed and compared with the energy capture efficiency of a simple pendulum in air.The results showed that appropriately choosing mass ratio can reduce natural frequency of a submerged parametrically excited pendulum; compared with a simple pendulum in air, energy capture frequency band width of a submerged parametrically excited pendulum is wider under wave excitation environment with low frequency and small amplitude, so its power generation power is higher.

关键词

波浪能发电装置 / 非线性机制 / 参数激励摆 / 能量俘获功率

Key words

wave energy converter / nonlinear mechanism / parametrically excited pendulum / energy capture power

引用本文

导出引用
王彤彤1,2,肖龙飞1,2,杨立军1,2. 浸没式参数激励摆波能转换装置能量俘获特性研究[J]. 振动与冲击, 2020, 39(3): 199-204
WANG Tongtong1,2, XIAO Longfei1,2, YANG Lijun1,2. Energy capture feature of wave energy converter with submerged parametric excitation pendulum[J]. Journal of Vibration and Shock, 2020, 39(3): 199-204

参考文献

[1] Titah-Benbouzid H, Benbouzid M. Ocean wave energy extraction: Up-to-date technologies review and evaluation[C]//IEEE PEAC 2014. IEEE, 2014: 338-342.
[2]  López I, Andreu J, Ceballos S, et al. Review of wave energy technologies and the necessary power-equipment[J]. Renewable and sustainable energy reviews, 2013, 27: 413-434.
[3] Design O S O. Ocean Wave Energy Harvesting[D]. WORCESTER POLYTECHNIC INSTITUTE, 2015.
[4]  Lehmann M, Karimpour F, Goudey C A, et al. Ocean wave energy in the United States: Current status and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1300-1313.
[5]  訚耀保. 海洋波浪能综合利用[M]. 上海科学技术出版社, 2013: 227-228.
[6] Zhu D, Beeby S P. A broadband electromagnetic energy harvester with a coupled bistable structure[C]//Journal of Physics: Conference Series. IOP Publishing, 2013, 476(1): 012070.
[7] Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter[J]. International Journal of Engineering Science, 2005, 43(17-18): 1377-1387.
[8] Zhu D, Tudor M J, Beeby S P. TOPICAL REVIEW:, Strategies for increasing the operating frequency range of vibration energy harvesters: a review[J]. Measurement Science & Technology, 2009, 21(2):022001.
[9] 肖晓龙,肖龙飞,李扬. 基于非线性能量俘获机制的直驱浮子式波浪能发电装置研究[J]. 振动与冲击, 2018, 37(2): 156-162.
XIAO Xiao-long, XIAO Long-fei, LI Yang. A directly driven floater type wave energy converter with nonlinear power-take-off mechanism in irregular waves. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(2): 156-162.
[10] Xu X, Wiercigroch M, Cartmell M P. Rotating orbits of a parametrically-excited pendulum[J]. Chaos, Solitons & Fractals, 2005, 23(5): 1537-1548.
[11] Bishop S R, Sofroniou A, Shi P. Symmetry-breaking in the response of the parametrically excited pendulum model[J]. Chaos, Solitons & Fractals, 2005, 25(2): 257-264.
[12] Garira W, Bishop S R. Rotating solutions of the parametrically excited pendulum[J]. Journal of sound and vibration, 2003, 263(1): 233-239.
[13] Marszal M, Witkowski B, Jankowski K, et al. Energy harvesting from pendulum oscillations[J]. International Journal of Non-Linear Mechanics, 2017, 94: 251-256.
[14] 陈恩利, 田瑞兰, 郜浩冬. 海洋波力发电倒置摆系统的非线性振动实验研究[J]. 振动与冲击, 2012, 31(15): 105-109.
CHEN En-li, TIAN Rui-lan,GAO Hao-dong. Experiment research on nonlinear vibration of an inverted pendulum for ocean wave power generation. [J]. Journal of vibration and shock, 2012, 31(15): 105-109.
[15] 李向红, 崔文良, 曹庆杰. 倒置数学摆在海洋发电中的应用研究[J]. 动力学与控制学报, 2009, 7(3): 252-257.
LI Xiang-hong, CUI Wen-liang, CAO Qing-jie, The study on the application of an inverted pendulum on ocean wave generation. [J] Journal of Dynamics and Control. 2009, 7(3): 252-257.
[16]  Ma T W, Zhang H, Xu N S. A novel parametrically excited non-linear energy harvester[J]. Mechanical Systems and Signal Processing, 2012, 28: 323-332.
[17] Yurchenko D, Alevras P. Parametric pendulum based wave energy converter[J]. Mechanical Systems and Signal Processing, 2018, 99: 504-515.
[18] 肖龙飞, 杨建民, 范模, 等. 160kDWT FPSO 在极浅水中运动安全性研究[J]. 船舶力学, 2006, 10(1): 7-14.
XIAO Long-fei, YANG Jian-min, FAN Mo, et al. Research on motions and safety performance of a 160kDWT FPSO in ultra-shallow water. [J]. Journal of Ship Mechanics, 2006, 10(1): 7-14.

PDF(1550 KB)

242

Accesses

0

Citation

Detail

段落导航
相关文章

/