空间站大柔性太阳电池翼驱动装置的滑模伺服控制

赵真1,2,王碧2,陈国平1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 214-218.

PDF(2205 KB)
PDF(2205 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 214-218.
论文

空间站大柔性太阳电池翼驱动装置的滑模伺服控制

  • 赵真1,2,王碧2,陈国平1
作者信息 +

Sliding mode servo control of a large flexible solar cell wing driving device

  • ZHAO Zhen1,2, WANG Bi2, CHEN Guoping1
Author information +
文章历史 +

摘要

针对空间站大柔性太阳电池翼高稳定对日跟踪驱动控制问题,提出了一种带运动规划和振动抑制的非线性快速终端滑模伺服控制方案。推导了太阳电池翼驱动状态方程、永磁同步电机动力学模型,同时考虑驱动装置传动间隙、静/动摩擦力矩切换等非线性传动特性,在动力学建模基础上设计高次样条运动规划、位置环积分分离调节器、速度环快速终端滑模变结构调节器的组合控制系统。通过对太阳电池翼对日跟踪过程的仿真校验,表明设计的控制方案可实现大惯量、超低频太阳电池翼较高的驱动速度稳定度和较好的跟踪精度。

Abstract

Aiming at driving control problem of a large flexible solar cell wing in space station, a nonlinear fast terminal sliding mode (FTSM) servo control scheme with motion planning and vibration suppression was proposed.The driving state equation of the flexible solar cell wing and dynamic model of permanent magnet synchronous motor (PMSM) were derived considering driving device’s nonlinear transmission characteristics including transmission clearance, static/dynamic friction torque switching.Based on dynamic modeling, a combined control system including motion planning with high spline function, position loop integral separation regulator and velocity loop fast terminal sliding mode variable structure regulator was designed.The simulation verification for solar cell wing’s tracking sun process was done.The results showed that the designed control scheme can realize higher driving speed stability and better tracking accuracy of solar cell wing with large inertia and ultra-low frequency.

关键词

柔性太阳电池翼 / 伺服控制 / 快速终端滑模控制 / 挠性抑制

Key words

large flexible solar cell wing / servo control / fast terminal sliding mode control / vibration suppression

引用本文

导出引用
赵真1,2,王碧2,陈国平1. 空间站大柔性太阳电池翼驱动装置的滑模伺服控制[J]. 振动与冲击, 2020, 39(3): 214-218
ZHAO Zhen1,2, WANG Bi2, CHEN Guoping1. Sliding mode servo control of a large flexible solar cell wing driving device[J]. Journal of Vibration and Shock, 2020, 39(3): 214-218

参考文献

 [1] 王忠贵.载人航天飞行控制理论与实践[M]. 北京:国防工业出版社, 2015.
 WANG Zhonggui. Theory and Practices of Manned Space Flight Control[M]. Beijing: National Defense Industry Press, 2015.
 [2] 周志成,曲广吉. 通信卫星总体设计和动力学分析[M]. 北京:中国科学技术出版社,2013: 329-337.
 ZHOU Zhicheng, QU Guangji. System design and dynamics analysis of communication satellites[M]. Beijing: China Science and Tehnology Press, 2013.
 [3] 洪嘉振,尤蓝超.刚柔耦合系统动力学研究进展[J]. 动力学与控制学报, 2004, 2(2):1-6.
 Hong Jia-zheng, You Chao-lan. Advances in dynamics of rigid-flexible coupling system[J]. Journal of Dynamics and Control, 2004, 2(2): 1-6.
 [4]  于登云,夏人伟,赵国伟,等.智能天线结构模糊自适应变形控制实验研究[J]. 宇航学报, 2006, 27(2): 245-249.
 Yu Deng-yun, Xia Ren-wei, Zhao Guo-wei, et al. Experimental research on deformation control for intelligent antenna structure based on selftuning fuzzy control[J]. Journal of Astronautics, 2006, 27(2): 245-249.
 [5] Bong Wie, Qiang Liu, Frank Bauer. Classical and Robust H∞ Control Redesign for the Hubble Space Telescope[J]. Journal of Guidance, Control, and Dynamics,1993,16(6):  1069-1077.
 [6] Yoshiro Hamada, Takashi Ohtani, Takashi Kida, etc. Synthesis of a linearly interpolated gain scheduling controller for large flexible spacecraft ETS-VIII[J]. Control Engineering Practice, 2011, 19(2011): 611-625.
 [7] 张晓宇,苏宏业. 滑模变结构控制理论进展综述[J]. 化工自动化及仪表, 2006, 33(2): 1-8.
ZHANG Xiao-yu, SU Hong-ye. Survey on the Developments of Sliding Mode Variable Structure Control Theory[J]. Control and Instruments in Chemical Industry, 2006, 33(2): 1-8.
 [8] 刘金琨,孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407-418.
LIU Jin-kun, SUN Fu-chun. Research and development on theory and algorithms of sliding mode control[J]. Control Theory & Applications, 2007, 24(3): 407-418.
 [9] HWANG C L, Sliding mode control using time-varying switching gain and boundary layer for electrohydraulic position and differential pressure control[J]. IEE Proc: Control Theory and Applications,1996, 143(4): 325-332.
 [10] 李兵强,陈晓雷,林辉等. 机电伺服系统齿隙补偿及终端滑模控制[J]. 电工技术学报, 2016, 31(9): 162-168.
LI Bing-qiang, CHEN Xiao-lei,LIN Hui,etc. Terminal Sliding Mode Control for Mechatronic Servo Systems with Backlash Nonlinearity Compenation[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 162-168.
[11] 程龙,陈娟,陈茂胜等. 光电跟踪系统快速捕获时间最优滑模控制技术[J]. 光学精密工程, 2017, 25(1): 148-154.
CHENG Long, CHEN Juan,CHEN Mao-sheng,etc. Fast Acquisition of Time Optimal Sliding Model Control Technology for Photoelectric Tracking System[J]. Optics and Precision Engineering, 2017, 25(1): 148-154.
 [12] 屠善澄.卫星姿态动力学与控制[M].北京:中国宇航出版社,2009.
 TU San-cheng. Satellite Attitude Dynamics and Control [M]. Beijing: China Aerospace Press, 2009.
[13] 白圣建. 挠性航天器的建模与控制方法研究[D]. 长沙: 国防科学技术大学, 2005.
 Bai Sheng-jian. Research on modeling and control of flexible spacecraft[D]. Changsha: National University of Defense Technology, 2005.
[14] Yung J. Lee, Murugan Subramaniam. Integrated System Tool for Flexible Multibody Dynamics and Control System Analysis[J]. AIAA-99-4228,1999: 1437-1447.
[15] 吴茂刚. 矢量控制永磁同步电动机交流伺服系统的研究[D]. 杭州:浙江大学, 2006.
Wu Mao-gang. Research on AC Servo System of Vector-Controlled Permanent Magnet Synchronous Motor[D]. Hangzhou: Zhejiang University, 2006.
[16] 陈荣. 永磁同步电机伺服系统研究[D]. 南京:南京航空航天大学,2004.
Chen Rong. Research on Permanent Magnet Synchronous Motor Servo System [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004.
[17] 杨国良,李建雄. 永磁同步电机控制技术[M]. 北京:知识产权出版社,2015
 YANG Guo-liang, LI Jian-guo. Permanent Magnet Synchronous Motor Control Technology[M]. Beijing: Intellectual Property Publishing House, 2015.
[18] 宋彦.伺服系统提高速度平稳度的关键技术研究与实现[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2010.
Song Yan. Study and Realization on Key Technology for Improve Velocity Stability[D]. Changchun: Changchun Institute of Optics Fine Mechanics and Physics,Chinese Academy of Sciences, 2010.
[19] Jinkun Liu, Xinhua Wang. Advanced Sliding Mode Control for Mechanical Systems[M]. Beijing: TsingHua University Press, 2011.
[20] Park KB, Tsuiji T. Terminal sliding mode control of second-order nonlinear uncertain syastems[J]. International Journal of Robust and Nonlinear Control,1999,9(11): 769-780.
[21] Renjith R. Kumar, Paul A. Cooper, Tae W. Lim. Sensitivity of Space Station Alpha Joint Robust Controller to Structural Modal Parameter Variations[J]. Journal of Guidance, Control,and Dynamics, 1992, 15(6): 1427-1433.
[22] Tae W. Lim, Paul A. Cooper, J. Kirk Ayers. Structural Dynamic Interaction with Solar Tracking Control for Evolutionary Space Station Concepts[R]. NASA Technical Memorandum 107629, Hampton: Langley Research Center,1992.

PDF(2205 KB)

959

Accesses

0

Citation

Detail

段落导航
相关文章

/