滚动轴承故障诊断的多重超阶分析方法

朱彦祺,李舜酩,潘高元,杜华蓉

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 227-232.

PDF(1187 KB)
PDF(1187 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 227-232.
论文

滚动轴承故障诊断的多重超阶分析方法

  • 朱彦祺,李舜酩,潘高元,杜华蓉
作者信息 +

Multifractal super order analysis method for rolling bearing fault diagnosis

  • ZHU Yanqi, LI Shunming, PAN Gaoyuan, DU Huarong
Author information +
文章历史 +

摘要

多重分形去趋势波动分析(MF-DFA)可以获得能够表征信号内在动力学机制的多重分形谱,但是在提取滚动轴承振动信号故障特征时存在参数接近、状态混叠等问题,导致分析结果易受信号噪声等因素干扰,影响分类精度。为解决此问题,提出了多重超阶分析(MF-SOA)的方法。该方法将极值增量方法引入了多重去趋势波动分析中,对时间序列进行取极值操作;然后计算并分析获得的极值增量序列的重分形特征,通过MF-SOA方法获得的特征可以更清晰地表现出序列的内部动力学机制。最后将所提出的方法应用于滚动轴承的故障诊断中。试验数据分析结果表明,该方法对于信号的不规则程度十分敏感,并且有效改善了MF-DFA方法的缺陷,对于模式相近的故障类型有更优的区分度,提高了滚动轴承故障诊断的精度。

Abstract

Multifractal de-trend fluctuation analysis (MF-DFA) can acquire multifractal spectrum being able to characterize intrinsic dynamic mechanism of a signal, but it has problems of parameters close and state aliasing when extracting fault features in rolling bearing vibration signals to leads to analysis results being easy to be interfered by signal noise and classification results being affected.Here, to solve this problem, the multifractal super order analysis (MF-SOA) method was proposed.Firstly, the extreme value increment method was introduced into MF-DFA, and extreme value operations were done for time series.Then, multifractal features of extreme value increment sequence obtained were calculated and analyzed.Features obtained with MF-SOA method could more clearly reveal internal dynamic mechanism of sequence.Finally, the proposed method was applied in fault diagnosis of rolling bearings.The test data analysis results showed that the proposed method is very sensitive to irregular degree of a signal, and can effectively improve defects of the MF-DFA method; it has a better discrimination degree for fault types with similar modes, and improves the accuracy of rolling bearing fault diagnosis.

关键词

多重分形 / 去趋势波动分形 / 极值增量 / 滚动轴承 / 故障诊断

Key words

multifractal / DFA / extreme value increment / rolling bearing / fault diagnosis

引用本文

导出引用
朱彦祺,李舜酩,潘高元,杜华蓉. 滚动轴承故障诊断的多重超阶分析方法[J]. 振动与冲击, 2020, 39(3): 227-232
ZHU Yanqi, LI Shunming, PAN Gaoyuan, DU Huarong. Multifractal super order analysis method for rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2020, 39(3): 227-232

参考文献

[1] Loutridis S J. Self-Similarity in Vibration Time Series: Application to Gear Fault Diagnostics[J]. Journal of Vibration & Acoustics, 2008, 130(3):569-583.
[2] 程军圣, 于德介. 基于时-能密度分析的滚动轴承故障诊断[J]. 振动与冲击, 2001, 20(3):79-81.
CHENG Jun-sheng, YU De-jie.Application of the Time_Energy Analysis to Fault Diagnosis in Roller Bearing[J].Journal of Vibration and Shock, 2001, 20(3):79-81.
[3] 张贤达等. 非平稳信号分析与处理[M]. 国防工业出版社, 1998.
[4] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971):903-995.
[5] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1994, 49(2):1685.
[6] Peng C K, Havlin S, Stanley H E, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.[J]. Chaos, 1995, 5(1):82-87.
[7] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A Statistical Mechanics & Its Applications, 2002, 316(1):87-114.
[8] Mali P, Mukhopadhyay A. Multifractal characterization of gold market: A multifractal detrended fluctuation analysis[J]. Physica A Statistical Mechanics & Its Applications, 2014, 413(11):361-372.
[9] Li E, Mu X, Zhao G, et al. Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China[J]. Water, 2015, 7(4):1670-1686.
[10] Zorick T, Mandelkern M A. Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique[J]. Plos One, 2013, 8(7):e68360.
[11] Liu H, Wang X, Lu C. Rolling bearing fault diagnosis based on LCD–TEO and multifractal detrended fluctuation analysis[J]. Mechanical Systems & Signal Processing, 2015, 60-61:273-288.
[12] Lin J, Chen Q. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion[J]. Mechanical Systems & Signal Processing, 2013, 38(2):515-533.
[13] 熊庆, 张卫华. 基于MF-DFA与PSO优化LSSVM的滚动轴承故障诊断方法[J]. 振动与冲击, 2015, 34(11):188-193.
XIONG Qing, ZHANG Wei-hua. Rolling bearing fault diagnosis method using MF-DFA and LSSVM based on PSO[J]. Journal of Vibration and Shock, 2015, 34(11): 188-193.
[14] Ashkenazy Y, Ivanov P C, Havlin S, et al. Magnitude and sign correlations in heartbeat fluctuations.[J]. Physical Review Letters, 2001, 86(9):1900-1903.
[15] Ashkenazy Y, Havlin S, Ivanov P C, et al. Magnitude and sign scaling in power-law correlated time series[J]. Physica A Statistical Mechanics & Its Applications, 2003, 323(5):19-41.
[16] 林近山, 陈前. 基于多重分形去趋势波动分析的齿轮箱故障特征提取方法[J]. 振动与冲击, 2013, 32(2):97-101.
Lin Jin-shan,Chen Qian.Fault feature extraction of gearboxes based On multifractal detrended fluctuation analysis[J].Journal of Vibration and Shock,2013,32(2):97-101.
[17] Moktadir Z, Kraft M, Wensink H. Multifractal properties of Pyrex and silicon surfaces blasted with sharp particles[J]. Physica A Statistical Mechanics & Its Applications, 2008, 387(8-9):2083-2090.
[18] 江星星, 李舜酩, 李世勋,等. 泵车排量检测的极值增量DFA方法[J]. 振动.测试与诊断, 2016, 36(2):227-232.
JIANG Xing-xing,LI Shun-ming,LI Shi-xun,et al. An Incremental DFA Method for Pump Displacement Detection[J]. Journal of Vibration, Measurement & Diagnosis, 2016,36(2):227-232.
[19] Roche F, Celle S, Pichot V, et al. Analysis of the interbeat interval increment to detect obstructive sleep apnoea/hypopnoea[J]. European Respiratory Journal, 2007, 29(6):1206-1211.
[20] LoParo K A, Bearings vibration dataset, Case Western ReserveUniversity, http://csegroups.case. edu/bearingdatacenter
[21] Thompson J R, Wilson J R. Multifractal detrended fluctuation analysis: Practical applications to financial time series[J]. Mathematics & Computers in Simulation, 2016, 126:63-88.
[22] 林近山, 窦春红, 张妮. 基于多重分形去趋势互相关分析的齿轮箱故障诊断[J]. 机械传动, 2016(1):91-94.
Lin Jin-shan, Dou Chun-hong, Zhang Ni, Fault diagnosis of gearbox based on multifractal detrended Cross-correlation analysis[J]. Journal of Mechanical Transmission,2016,40(1): 91-94

PDF(1187 KB)

438

Accesses

0

Citation

Detail

段落导航
相关文章

/