小直径附加圆柱对圆柱涡激振动抑制的参数优化

陈威霖,及春宁,许栋,徐晓黎

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 24-29.

PDF(840 KB)
PDF(840 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 24-29.
论文

小直径附加圆柱对圆柱涡激振动抑制的参数优化

  • 陈威霖,及春宁,许栋,徐晓黎
作者信息 +

Parametric optimization for vortex-induced vibration suppression of a single cylinder with two small cylinders symmetrically arranged in rear

  • CHEN Weilin, JI Chunning, XU Dong, XU Xiaoli
Author information +
文章历史 +

摘要

采用基于迭代嵌入式浸入边界法对后方对称布置两个小直径圆柱的单圆柱涡激振动进行了数值模拟研究,对涡激振动抑制进行了参数优化。雷诺数和圆柱直径比分别为Re=100和d/D=0.125,其中D和d分别为大、小圆柱直径。通过改变控制角度(θ)、主圆柱与小圆柱的间隙比(G/D)、小圆柱旋转角速度和旋转方向(α)和阻尼比(ζ)确定的最优控制参数组合为θ=25°、G/D=0.125、α=-2.2和ζ=1.02。小圆柱的旋转角速度和旋转方向对圆柱振幅有一定的影响,其中内向反转会进一步抑制圆柱的振动,外向反转则恰好相反。随着阻尼比的增加,圆柱振幅先增后减,但影响程度较小。

Abstract

Numerical simulations were done for vortex-induced vibration of a single cylinder with two small cylinders arranged in rear using the immersion boundary method based on iterative embedded form to optimize parameters of vortex-induced vibration suppression.Reynolds number and the diameter ratio of small cylinder to main one were Re=100  and  d/D=0.125.The simulation results showed that the optimal control parameters are determined as follows:  θ=25°, G/D=0.125, α=-2.2  and  ζ=1.02 through changing control angle (θ ), gap ratio between small cylinder and main one (G/D), small cylinder’s rotating speed and rotating direction (α) and damping ratio (ζ); small cylinder’s rotating speed and rotating direction have a certain effect on main cylinder’s vibration amplitude; the inward counter-rotating (IC) can further suppress main cylinder’s vibration, while the outward counter-rotating (OC) has the opposite effect; main cylinder’s vibration amplitude firstly increases then decreases with increase in damping ratio, but its influence level is smaller.

关键词

涡激振动 / 小圆柱 / 振动控制 / 质量比 / 阻尼比

Key words

vortex-induced vibration / small cylinder / vibration control / mass ratio / damping ratio

引用本文

导出引用
陈威霖,及春宁,许栋,徐晓黎. 小直径附加圆柱对圆柱涡激振动抑制的参数优化[J]. 振动与冲击, 2020, 39(3): 24-29
CHEN Weilin, JI Chunning, XU Dong, XU Xiaoli. Parametric optimization for vortex-induced vibration suppression of a single cylinder with two small cylinders symmetrically arranged in rear[J]. Journal of Vibration and Shock, 2020, 39(3): 24-29

参考文献

[1] Kumar R A, Sohn C H, Gowda B H L. Passive Control of Vortex-Induced Vibrations: An Overview. Recent Patents on Mechanical Engineering, 2008, 1(1):1-11.
[2] Wu X, Ge F, Hong Y. A review of recent studies on vortex-induced vibrations of long slender cylinders. Journal of Fluids and Structures, 2012, 28: 292-308.
[3] Choi H, Jeon W-P, Kim J. Control of flow over a bluff body. Annual Review of Fluid Mechanics, 2008, 40: 113-139.
[4] Rashidi S, Hayatdavoodi M, Esfahani J A. Vortex shedding suppression and wake control: A review. Ocean Engineering, 2016, 126: 57-80.
[5] Artana G, Sosa R, Moreau E, et al. Control of the near-wake flow around a circular cylinder with electrohydrodynamic actuators. Experiments in Fluids, 2003, 35: 580-588.
[6] Tao J S, Huang X Y, Chan W K. A flow visualization study on feedback control of vortex shedding from a circular cylinder. Journal of Fluids and Structures, 1996, 10: 965-970.
[7] Chen W-L, Xin D-B, Xu F, et al. Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. Journal of Fluids and Structures, 2013, 42: 25-39.
[8] Baek S J, Sung H J. Numerical simulation of the flow behind a rotary oscillating circular cylinder. Physics of Fluids, 1998, 10(4): 869-876.
[9] Gao Y, Fu S, Wang J, et al. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder. Ocean Engineering, 2015, 103: 40-54.
[10] Pinar E, Ozkan G M, Durhasan T, et al. Flow structure around perforated cylinders in shallow water. Journal of Fluids and Structures, 2015, 55: 52-63.
[11] Sakamoto H, Haniu H. Optimum suppression of fluid forces acting in a circular cylinder. Journal of Fluids Engineering, 1994, 116: 221-227.
[12] Muddada S, Patnaik B S V. An active flow control strategy for the suppression of vortex structures behind a circular cylinder. European Journal of Mechanics-B/Fluids, 2010, 29: 93-104.
[13] Jiménez-González J I, Huera-Huarte F J. Experimental sensitivity of vortex-induced vibrations to localized wake perturbations. Journal of Fluids and Structures, 2017, 74: 53-63.
[14] Zhu H, Gao Y. Vortex-induced vibration suppression of a main circular cylinder with two rotating control rods in its near wake: Effect of the rotation direction. Journal of Fluids and Structures, 2017, 74: 469-491.
[15] Korkischko I, Meneghini J R. Suppression of vortex-induced vibration using moving surface boundary-layer control. Journal of Fluids and Structures, 2012, 34: 259-270.
[16] Zhu H, Yao J, Ma Y, et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders. Journal of Fluids and Structures, 2015, 57: 66-80.
[17] Dipankar A, Sengupta T K, Talla S B. Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 2007, 573: 171-190.
[18] Zhu H, Yao J. Numerical evaluation of passive control of VIV by small control rods. Applied Ocean Research, 2015, 51: 93-116.
[19] Norberg C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. Journal of Fluid Mechanics, 1994, 258: 287-316.
[20] Williamson C H K. Three-dimensional wake transition. Journal of Fluid Mechanics, 1996, 328: 345-407.
[21] Zdravkovich M M. Flow Around Circular Cylinders, Vol. 1: Fundamentals. Oxford University Press, Oxford, England, 1997.
[22] Ji C, Munjiza A, Williams J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications. Journal of Computational Physics, 2012, 231: 1797-1821.
[23] Mittal, S. Control of flow past bluff bodies using rotating control cylinders. Journal of Fluids and Structures, 2001,15(2), 291-326.
[24] Strykowski P J, Sreennivasan K R. On the formation and suppression of vortex ‘shedding’ at low Reynolds numbers. Journal of Fluid Mechanics, 1990, 218: 71-107.

PDF(840 KB)

Accesses

Citation

Detail

段落导航
相关文章

/