[1] 陈进. 机械设备故障诊断技术及其应用[M]. 上海: 上海高教电子音像出版社, 2003.
[2] 季忠, 金涛, 杨炯明等. 基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J]. 中国机械工程, 2005, 16(1): 50-53.
Ji Zhong, Jin Tao, Yang Jiong-ming, Qin Shu-ren. Application of Denoising Method Based on Independent Component Analysis in Feature Extraction of Rotating Machinery [J]. China Mechanical Engineering, 2005, 16(1): 50-53.
[3] 唐先广, 郭瑜, 丁彦春. 基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J]. 振动与冲击, 2011, 30(10): 45-49.
Tang Xianguang, Guo Yu, Ding Yanchun. Rolling element bearing fault feature extraction based on HHT and independent compoment analysis [J]. Journal of Vibration and Shock,2011, 30(10): 45-49.
[4] Venkataramani Y. A noise reduction technique of speech signal using ICA and spectral analysis[J]. International Journal of Electronics, 2007, 94(12): 1171-1179.
[5] Huang H, Ouyang H, Gao H, et al. A Feature Extraction Method for Vibration Signal of Bearing Incipient Degradation[J]. Measurement Science Review, 2016, 16(3): 149-159.
[6] 袁小宏, 屈梁生. 机械故障诊断中的信息融合利用问题研究[J]. 振动、测试与诊断, 1999, 19(3): 188-192.
Yuan Xiao-hong, Qu Liang-sheng. Application of Information Fusion Technology in Mechanical Fault Diagnosis[J]. Journal of Vibration, Measurement & Diagnosis, 1999, 19(3): 188-192.
[7] 谭逢友, 卢宏伟, 刘成俊等. 信息融合技术在机械故障诊断中的应用[J]. 重庆大学学报(自然科学版), 2006, 29(1): 15-18.
Tan Feng-you, Lu Hong-wei, Liu Cheng-jun. Application of Information Fusion Technology in Mechanical Fault Diagnosis[J]. Journal of Chongqing University(Nɑturɑl Science Edition), 2006, 29(1): 15-18.
[8] Al-Raheem K F, Roy A, Ramachandran K, et al. Rolling element bearing faults diagnosis based on autocorrelation of optimized: wavelet de-noising technique[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(3-4): 393-402.
[9] Gelle G, Colas M, Servière C. Blind Source Separation: A New Pre-Processing Tool for Rotating Machines Monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 790-795.
[10] Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures[J]. Neurocomputing, 2002, 49: 349-368.
[11] Karhunen, Juha. Independent component analysis[M]. J. Wiley, 2001.
[12] Hyvärinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
[13] Tichavský P, Koldovský Z, Oja E. Performance Analysis of the FastICA Algorithm and Cramér–Rao Bounds for Linear Independent Component Analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 54: 1189-1203.
[14] 翟翌立, 戴逸松. 多传感器数据自适应加权融合估计算法的研究[J]. 计量学报, 1998, 19(1): 69-75.
Zhai Yi-li, Dai yi-song. Research on adaptive weighted fusion estimation algorithm for multi-sensor data[J]. Acta Metrologica Sinica. 1998, 19(1):69-75.
[15] 从飞云, 陈进, 董广明. 基于谱峭度和AR模型的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4): 538-541.
Cong feiyun, Chen jin, Dong guang-ming. Fault Diagnosis of Rolling Bearing Based on Spectral Kurtosis and AR Model[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4):538-541.
[16] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006: 282-307.
[17] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007: 108-124.
[18] Antoni J, Randall R B. Differential Diagnosis of Gear and Bearing Faults[J]. Journal of Vibration & Acoustics, 2002, 124(2): 165-171.
[19] Gilles J. Empirical Wavelet Transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.