基于信息融合与FastICA的轴承故障提取方法

刘朋1,刘韬1,王思洪2,伍星1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 250-259.

PDF(2027 KB)
PDF(2027 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 250-259.
论文

基于信息融合与FastICA的轴承故障提取方法

  • 刘朋1,刘韬1,王思洪2,伍星1
作者信息 +

Bearing fault diagnosis method based on information fusion and fast ICA

  • LIU Peng1, LIU Tao1, WANG Sihong2, WU Xing1
Author information +
文章历史 +

摘要

针对振动传感器监测信号易受噪声干扰的问题,提出一种基于FastICA算法与信息融合的轴承故障诊断方法。算法对各通道测得的信号采用FastICA算法进行降噪处理,采用自适应线性加权算法对降噪后信号进行数据层信息融合,最后基于谱峭度指标设计自适应带通滤波器,进行特征提取。此方法解决了低信噪比条件下的轴承故障特征提取问题。使用了仿真和实验轴承故障信号验证了算法的有效性。

Abstract

Here, aiming at the problem of signals monitored by vibration sensors being easy to be interfered by noise, a bearing fault diagnosis method based on fast ICA algorithm and information fusion was proposed.Firstly, this method used the fast ICA algorithm to de-noise signals measured at each channel.Then an adaptive linear weighted fusion algorithm was used to perform data layer information fusion for the de-noised signals.Finally, an adaptive band-pass filter was designed based on the spectral kurtosis index to extract features.This method solved bearing fault feature extraction problems under the condition of low SNR.Simulated and actual test bearing fault signals were used to verify the effectiveness of the proposed method.

关键词

FastICA / 自适应线性加权融合 / 谱峭度 / 轴承故障

Key words

fast ICA / adaptive linear weighted fusion / spectral kurtosis / bearing faults

引用本文

导出引用
刘朋1,刘韬1,王思洪2,伍星1. 基于信息融合与FastICA的轴承故障提取方法[J]. 振动与冲击, 2020, 39(3): 250-259
LIU Peng1, LIU Tao1, WANG Sihong2, WU Xing1. Bearing fault diagnosis method based on information fusion and fast ICA[J]. Journal of Vibration and Shock, 2020, 39(3): 250-259

参考文献

[1] 陈进. 机械设备故障诊断技术及其应用[M]. 上海: 上海高教电子音像出版社, 2003.
[2] 季忠, 金涛, 杨炯明等. 基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J]. 中国机械工程, 2005, 16(1): 50-53.
Ji Zhong, Jin Tao, Yang Jiong-ming, Qin Shu-ren. Application of Denoising Method Based on Independent Component Analysis in Feature Extraction of Rotating Machinery [J]. China Mechanical Engineering, 2005, 16(1): 50-53.
[3] 唐先广, 郭瑜, 丁彦春. 基于独立分量分析与希尔伯特-黄变换的轴承故障特征提取[J]. 振动与冲击, 2011, 30(10): 45-49.
Tang Xianguang, Guo Yu, Ding Yanchun. Rolling element bearing fault feature extraction based on HHT and independent compoment analysis [J]. Journal of Vibration and Shock,2011, 30(10): 45-49.
[4] Venkataramani Y. A noise reduction technique of speech signal using ICA and spectral analysis[J]. International Journal of Electronics, 2007, 94(12): 1171-1179.
[5] Huang H, Ouyang H, Gao H, et al. A Feature Extraction Method for Vibration Signal of Bearing Incipient Degradation[J]. Measurement Science Review, 2016, 16(3): 149-159.
[6] 袁小宏, 屈梁生. 机械故障诊断中的信息融合利用问题研究[J]. 振动、测试与诊断, 1999, 19(3): 188-192.
Yuan Xiao-hong, Qu Liang-sheng. Application of Information Fusion Technology in Mechanical Fault Diagnosis[J]. Journal of Vibration, Measurement & Diagnosis, 1999, 19(3): 188-192.
[7] 谭逢友, 卢宏伟, 刘成俊等. 信息融合技术在机械故障诊断中的应用[J]. 重庆大学学报(自然科学版), 2006, 29(1): 15-18.
Tan Feng-you, Lu Hong-wei, Liu Cheng-jun. Application of Information Fusion Technology in Mechanical Fault Diagnosis[J]. Journal of Chongqing University(Nɑturɑl Science Edition), 2006, 29(1): 15-18.
[8] Al-Raheem K F, Roy A, Ramachandran K, et al. Rolling element bearing faults diagnosis based on autocorrelation of optimized: wavelet de-noising technique[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(3-4): 393-402.
[9] Gelle G, Colas M, Servière C. Blind Source Separation: A New Pre-Processing Tool for Rotating Machines Monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(3): 790-795.
[10] Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures[J]. Neurocomputing, 2002, 49: 349-368.
[11] Karhunen, Juha. Independent component analysis[M]. J. Wiley, 2001.
[12] Hyvärinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
[13] Tichavský P, Koldovský Z, Oja E. Performance Analysis of the FastICA Algorithm and Cramér–Rao Bounds for Linear Independent Component Analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 54: 1189-1203.
[14] 翟翌立, 戴逸松. 多传感器数据自适应加权融合估计算法的研究[J]. 计量学报, 1998, 19(1): 69-75.
Zhai Yi-li, Dai yi-song. Research on adaptive weighted fusion estimation algorithm for multi-sensor data[J]. Acta Metrologica Sinica. 1998, 19(1):69-75.
[15] 从飞云, 陈进, 董广明. 基于谱峭度和AR模型的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4): 538-541.
Cong feiyun, Chen jin, Dong guang-ming. Fault Diagnosis of Rolling Bearing Based on Spectral Kurtosis and AR Model[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4):538-541.
[16] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006: 282-307.
[17] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007: 108-124.
[18] Antoni J, Randall R B. Differential Diagnosis of Gear and Bearing Faults[J]. Journal of Vibration & Acoustics, 2002, 124(2): 165-171.
[19] Gilles J. Empirical Wavelet Transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.
 
 

PDF(2027 KB)

Accesses

Citation

Detail

段落导航
相关文章

/