摘要
基于线弹性和小变形假设理论,以卡氏第二定理为理论基础,推导了S型悬臂梁x向、y向和z向柔度的解析计算公式,利用有限元方法对柔度解析式进行校验。通过定义柔度比函数,比较了倒角S型悬臂梁、直梁S型悬臂梁和圆弧S型悬臂梁的柔度性能。结果表明:S型悬臂梁各柔度计算公式的相对误差均在10%以内,理论分析与仿真结果基本吻合,验证了S型悬臂梁各柔度解析式的正确性。当倒角S型悬臂的γ=0.2时,圆弧S型悬臂梁的x向和z向柔度最大,直梁S型悬臂梁的y向柔度最大。当α=18,β=6时,直梁S型悬臂梁的y向柔度最大,圆弧S型悬臂梁的z向柔度最大;倒角S型悬臂的参数0.2≤γ≤2.2时,圆弧S型悬臂梁的x向柔度最大;倒角S型悬臂的参数γ>2.2时,倒角S型悬臂梁的x向柔度最大。本文的研究内容为S型悬臂梁的工程设计和应用提供了理论基础。
Abstract
Based on the theory of linear elasticity and small deformation, analytical calculation formulas for compliances in x, y and z directions of a S-type cantilever beam were deduced by using Castigliano’s second theorem.The correctness of these formulas was verified by using the finite element method (FEM).Compliances of curved S-type cantilever beam, straight one and arc one were compared by defining the compliance ratio function.The results showed that relative errors of various compliance calculation formulas for S-type cantilever beams are all less than 10%, theoretical analysis results agree well with simulation ones to verify the correctness of various compliance analytical calculation formulas for S-type cantilever beams; when γ=0.2 for curved S-type cantilever beam, compliances in x and z directions of arc one are the largest, compliance in y direction of straight one is the largest; when α=18 and β=6, compliance in y direction of straight S-type cantilever beam is the largest, and compliance in z direction of arc one is the largest; when 0.2≤γ≤2.2 for curved S-type cantilever beam, compliance in x direction of arc one is the largest; when γ>2.2 for curved S-type cantilever beam, compliance in x direction of curved one is the largest; the study results provide a theoretical basis for engineering design of S-type cantilever beams and their application.
关键词
S型悬臂梁 /
柔度 /
卡式定理 /
有限元 /
柔度比
{{custom_keyword}} /
Key words
S-type cantilever beam /
compliance /
Castigliano’s theorem /
finite element method (FEM) /
compliance ratio
{{custom_keyword}} /
于月民1,盖芳芳1,丁元柱1,于丽艳2.
S型悬臂梁柔度性能的计算与分析[J]. 振动与冲击, 2020, 39(3): 276-281
YU Yuemin1, GAI Fangfang1, DING Yuanzhu1, YU Liyan2.
Compliance calculation and analysis for a S-type cantilever beam[J]. Journal of Vibration and Shock, 2020, 39(3): 276-281
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 石然,裘安萍,苏岩.硅微谐振式加速度计的实现及性能测试[J].光学 精密工程,2010,18(12):2583-2589.
SHI Ran,QIU An-ping,SU Yan.Implementation and experiments of micromechanical differential silicon resonant accelerometer [J].Opt.Precision Eng.,2010,18(12):2583-2589.
[2] 陈光焱,吴嘉丽,赵龙,等.基于阿基米德螺旋线的低g值微惯性开关[J].光学 精密工程,2009,17(6):1257-1261.
CHEN Guang-yan,WU Jia-li,ZHAN Long,et al.Low-g micro inertial switch based on Archimedes spiral[J].Opt.Precision Eng.,2009,17(6):1257-1261.
[3] 伞海生,宋子军,王翔,等.适用于恶劣环境的MEMS压阻式压力传感器[J].光学 精密工程,2012,20(3):550-555.
SAN Hai-sheng,SONG Zi-jun,WAN Xiang,et al.. Piezoresistive pressure sensors for harsh environments[J].Opt.Precision Eng.,2012,20(3):550-555.
[4] 杨期江,李伟光,赵学智,等.挠性支承可倾瓦轴承动力特性研究[J].振动与冲击,2018,37(16):111-117.
YANG Qi-jiang,LI Wei-guang,ZHAO Xue-zhi,et al. A study on dynamic characteristics of flexure pivot tilting pad bearings[J].Vibration and Shock,2018,37(16):111-117.
[5] WANG Nian-feng,LIANG Xiao-he,ZHANG Xian-min.
Stiffness analysis of corrugated flexure beam used in compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2015,28(4):776-784.
[6] 于靖军,郝广波,陈贵敏,等.柔性机构及其应用研究进展[J].机械工程学报,2015,51(13):53-468.
YU Jing-jun,HAO Guang-bo,CHEN Gui-min,et al.State-of-art of compliant mechanisms and their applications[J].Journal of Mechanical Engineering,2015,51(13):53-68.
[7] HOU C W,LAN C C.Functional joint mechanisms with constant torque outputs[J].Mechanical and Machine Theory,2013,62:166-181.
[8] 邱丽芳,韦志鸿,俞必强,等.LET柔性铰链的等效刚度分析及其参数优化[J].工程力学,2014,31(1):188-192.
QIU Li-fang,WEI Zhi-hong,YU Bi-qiang,et al.Analysia of equivalent stiffness and parameter optimization of LET flexure hinge[J].Engineering Mechanics,2014,31(1):188-192.
[9] 曹毅,刘凯,单春成,等.抗拉柔性铰链的理论建模及有限元分析[J].光学 精密工程,2016,24(1):119-125.
CAO Yi,LIU Kai,SHAN Chun-cheng,et al.Theory modeling and finite element analysis of tensile flexure hinge [J].Opt.Precision Eng.,2016,24(1):119-125.
[10] 刘凯,曹毅,丁锐.平面折展机构平面弹簧设计与分析[J].中国机械工程,2016,27(19):2663-2667.
LIU Kai,CAO Yi,DING Rui.Design and analysis of LETs planar spring[J].China Mechanical Engineering,2016,27(19):2663-2667.
[11] 王念峰,张志远,张宪民,等.三种两自由度柔顺精密定位平台的性能对比与分析[J].机械工程学报,2018,54(13):102-109.
WANG Nian-feng,ZHANG Zhi-yuan,ZHANG Xian-min,et al. Performance comparison and analysis of Three 2-DOF compliant precision positioning stages [J].Journal of Mechanical Engineering,2018,54(13):102-109.
[12] 闫凯,张静,寇子明.S型折叠柔性铰链结构设计[J].中国机械工程,2017,28(14):1696-1700.
YAN Kai,ZHANG Jing,KOU Zi-ming.Structure design of S-type foldable flexible hinges[J].China Mechanical Engineering,2017,28(14):1696-1700.
[13] 李华,石庚辰.MEMS平面微弹簧弹性系数的研究[J].探测与控制学报,2005,27(4):42-44.
LI Hua,SHI Geng-chen.Study on the elastic coefficient of MEMS planar microspring[J].Journal of Detection and Control,2005,27(4):42-44.
[14] 吴志亮,常娟,冯鹏洲,等.引信用MEMS平面微弹簧刚度分析[J].南京理工大学学报(自然科学版),2008,32(2):140-143.
WU Zhi-liang,CHANG Juan,FENG Peng-zhou,et al.Elastic coefficient analysis of MEMS planar microspring used in fuse[J].Journal of NanjingUniversity of Science and Technology(Natural Science),2008,32(2):140-143.
[15] 刘双杰,郝永平.S型折叠式微悬臂梁刚度计算[J].光学 精密工程,2013,21(2):388-393.
LIU Suang-jie,HAO Yong-ping.Calculation for spring constants of folded serpentine[J].Opt.Precision Eng.,2013,21(2):388-393.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}