中低应变率下闭孔泡沫铝动态力学性能研究

郭亚周1,杨海1,刘小川1,何思渊2,王计真1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 282-288.

PDF(2509 KB)
PDF(2509 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 282-288.
论文

中低应变率下闭孔泡沫铝动态力学性能研究

  • 郭亚周1,杨海1,刘小川1,何思渊2,王计真1
作者信息 +

Dynamic mechanical properties of closed cell aluminum foam under medium and low strain rates

  • GUO Yazhou1, YANG Hai1, LIU Xiaochuan1, HE Siyuan2, WANG Jizhen1
Author information +
文章历史 +

摘要

为探索闭孔泡沫铝的动态力学性能与吸能特性,基于万能材料试验机和高速液压伺服材料试验机在常温下分别对闭孔泡沫铝在准静态和中应变率下(0.001~100 s-1)的动态力学性能进行了测试,分析了不同应变率、不同相对密度和不同泡沫铝基体特性下闭孔泡沫铝的应力应变曲线特征和吸能特性变化。研究结果表明:中低应变率下的纯铝基体泡沫铝并不具备应变率效应,高脆性、相对密度较小的泡沫铝具备更好的吸能特性,塑性和脆性基体泡沫铝变形带分别呈现”V”形和”X”形,脆性基体泡沫铝同样不具备应变率效应

Abstract

To explore dynamic mechanical properties and energy absorption characteristics of closed cell aluminum foam, based on universal material testing machines and high speed hydraulic servo material testing machines, dynamic mechanical properties of closed cell aluminum foam under quasi-static state and medium strain rate (0.001-100 s-1) were tested at room temperature to analyze features of stress-strain curves and energy absorption characteristics of closed cell aluminum foam under different strain rates, different relative densities and different foam aluminum matrix properties.The results showed that pure aluminum matrix aluminum foam under medium and low strain rates has no strain rate effect; aluminum foam with high brittleness and smaller relative density has better energy absorption characteristics; plastic and brittle matrix aluminum foam deformation bands reveal “V” and “X” shapes, respectively; brittle matrix aluminum foam also has no strain rate effect.

关键词

闭孔泡沫铝 / 中低应变率 / 吸能特性 / 应变率效应 / 脆/塑特性 / 变形带

Key words

close cell aluminum foam / medium and low strain rates / energy absorption characteristics / strain rate effect / brittle/plastic properties / deformation band

引用本文

导出引用
郭亚周1,杨海1,刘小川1,何思渊2,王计真1. 中低应变率下闭孔泡沫铝动态力学性能研究[J]. 振动与冲击, 2020, 39(3): 282-288
GUO Yazhou1, YANG Hai1, LIU Xiaochuan1, HE Siyuan2, WANG Jizhen1. Dynamic mechanical properties of closed cell aluminum foam under medium and low strain rates[J]. Journal of Vibration and Shock, 2020, 39(3): 282-288

参考文献

[1] 程鹏,李伟,翟敏刚等. 双层泡沫铝夹芯板抗滚石冲击结构性能优化研究[J]. 振动与冲击,2018,37(05): 85-91.
Cheng Peng, Li Wei, Zhai Mingang, et al. Structure performance optimization of double-layer aluminum foam sandwich panels under rockfalls impact [J]. Journal of Vibration and Shock, 2018, 37(05): 85-91.
[2] 任新见,李广新,张胜民. 泡沫铝夹心排爆罐抗爆罐抗爆性能试验研究[J]. 振动与冲击,2011,30(5):213-217.
Ren Xinjian, Li Guangxin, Zhang Shengmin. Antidetonation property tests for explosion-proof pots made of sandwich structure with aluminum foam[J]. Journal of Vibration and Shock, 2011, 30(5): 213-217.
[3] 刘新让,田晓耕,卢天健,等. 泡沫铝夹芯圆筒抗爆性能研究[J]. 振动与冲击,2012,31(23):166-173.
Liu Xinrang, Tian Xiaogeng, Lu Tianjian, et al. Blast-resistance behaviors of sandwich-walled holl- ow cylinders with aluminum foam cores[J]. Journa of Vibration and Shock, 2012, 31 (23):166- 173.
[4] Dannemann KA, Landkford J. Effect of cell morphology on the compressive properties of open-cell aluminum foams[J], Materials Science and Engineering A, 2000, 283(1-2): 105-110.
[5] Mukai T, Kanahashi H, Yamada Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam[J], Scripta Materialia, 1999, 41(Compendex): 365-371.
[6] Mukai T, Miyoshi T, Nakano S, Somekawa H, Higashi K. Compressive response of a closed-cell aluminum foam at high strain rate[J]. Script Materialia, 2006, 54(Compendex): 533-537.
[7] Paul A, Ramamurty U. Strain rate sensitivity of a closed-cell aluminum foam[J], Materials Science and Engineering A,2000, 281(1-2): 1-7.
[8] 李忠献,张茂轩,师燕超.闭孔泡沫铝的动态压缩性能试验研究[J].振动与冲击,2017,36(05):1-6.
Li Xianzhong, Zhang Maoxuan, Shi Yanchao. Tests for dynamic compressive performance of closed-cell aluminum foam [J]. Journa of Vibration and Shock, 2017, 36(05):1-6.
[9] Yongliang Mu, Guangchun Yao, Zhuokun Cao, et al. Strain-rate effects on the compressive response of closed-cell copper-coated carbon fiber/aluminum composite foam. Scripta Materialia, 2011, 64:61-64.
[10] Deshpande VS, Fleck NA. High strain rate compressive behavior of aluminum alloy foam[J], International Journal of Impact Engineering, 2000, 24(3): 277-298.
[11] Wang, Z, Ma H, Zhao L, et al. Studies on the dynamic compressive properties of open-cell alumi- num alloy foams[J], Scripta Materialia, 2006,54(1): 83-87.
[12] 程和法,黄笑梅,许铃.基体对泡沫铝压缩行为与吸能性的影响[J].有色金属,2003(3):10-12+22.
Cheng Hefa, Huang Xiaomei, Xu Ling. Effect of Matrix Properties on Conpressive Behavior and Energy Absorption of Foamed AL Alloys[J]. Nonferrous Metals, 2003(3): 10-12+22.
[13] 许玲,黄笑梅,程和法.几种不同性质基体泡沫铝的压缩性能研究[J].合肥工业大学学报(自然科学版),2003(5):1079-1082.
Xu Ling, Huang Xiaomei, Cheng Hefa. Investigation on the Compressive Properties of some AL Foams with Different Matrixes[J]. Journal of Hefei University of Technology, 2003(5): 1079-1082.
[14] Idris M I, Vodenicharova T, Hoffman M. Mechanical behavior and energy absorption of closed-cell aluminum foam panels in uniaxial compressive[J]. Materials Science and Engineering: A, 2009,517(1): 37-45.
[15] 王鹏飞,胡时胜.轴向尺寸对泡沫铝动静态力学性能的影响[J].爆炸与冲击,2012,32(04):393-398.
Wang Pengfei, Hu Shisheng. Mechanical properties of foam aluminum with different sizes[J]. Explosion and Shock Waves, 2012, 32(04): 393-398.
[16] Chen W, Lu F, Frew D.J,et al. Dynamic compression testing of soft materials[J]. Journal of Applied Mechanics, 2002, 69(3):214-223.
[17] Chen W, Zhang B, Forrestal M.J,et al.A split Hopkinson bar technique for low impedance materials[J]. Experimental Mechanics, 1999, 39(2):81-85..
[18] Miltz J, Gruenbaum G. Evaluation of Cushion Properties of Plastic Foams Compressive measurements[J]. Polymer Eng Sci, 198, 21(15): 1010-1014

PDF(2509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/