基于主成分分析马氏距离的支腿控制阀健康评估

张旭东1,黄亦翔1,单增海2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 46-51.

PDF(1311 KB)
PDF(1311 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 46-51.
论文

基于主成分分析马氏距离的支腿控制阀健康评估

  • 张旭东1,黄亦翔1,单增海2
作者信息 +

Health evaluation of a crane’s leg control valve based on PCA and Mahalanobis distance

  • ZHANG Xudong1,  HUANG Yixiang1,  SHAN Zenghai2
Author information +
文章历史 +

摘要

支腿控制阀的性能是影响起重机支腿系统伸缩性能的重要因素之一。为了准确的评估支腿控制阀的健康性能,提出一种支腿系统的性能衰退与健康状态的评估方法,该方法基于PCA降维与马氏距离相结合的分析模型,建立不同状态下传感器信号与关键零部件的映射关系,从而达到对起重机支腿系统性能衰退量化评估的目的。该方法应用于起重机支腿控制阀的压力信号,通过对传感器信号内蕴关系及起重机在各年份提取的特征在特征空间的相关性分析,以得到量化性能评估结果。与常见的其他方法相比,该模型能够准确地反映起重机支腿系统历年来的性能衰退趋势,具有更好的鲁棒性与泛化性。

Abstract

The performance of a leg control valve is one of important factors affecting telescopic performance of a crane’s leg system.Here, in order to accurately evaluate health performance of a leg control valve, an evaluation method for crane leg system’s performance degradation and health state was proposed based on the analysis model using the principal component analysis (PCA) dimension reduction combined with Mahalanobis distance to establish a mapping relation between sensor signals and key components under different states, and achieve the goal to quantitatively evaluate a crane leg system’s performance degradation.The method was used with pressure signals of a crane’s leg control valve.Its quantitative performance evaluation results were obtained using the correlation analysis of sensor signal implication relation and crane’s each year features extracted in the feature space.It was shown that compared with other methods, the proposed model can accurately reflect performance degradation trend of a crane leg system over years with better robustness and generalization.

关键词


支腿控制阀
/ 主成分分析 / 马氏距离 / 健康评估 / 性能衰退

Key words

outrigger control valves / principal component analysis (PCA) / Mahalanobis distance / health evaluation / performance degradation

引用本文

导出引用
张旭东1,黄亦翔1,单增海2. 基于主成分分析马氏距离的支腿控制阀健康评估[J]. 振动与冲击, 2020, 39(3): 46-51
ZHANG Xudong1, HUANG Yixiang1, SHAN Zenghai2. Health evaluation of a crane’s leg control valve based on PCA and Mahalanobis distance[J]. Journal of Vibration and Shock, 2020, 39(3): 46-51

参考文献

[1] 孟光, 尤明懿. 基于状态监测的设备寿命预测与预防维护规划研究进展[J]. 振动与冲击, 2011, 30(8):1-11.
    MENG Guang, YOU Mingyi. Review on condition-based equipment residual life prediction and preventive maintenance scheduling[J]. Journal of Vibration and Shock, 2011, 30(8):1-11.
[2]  罗曦, 高崇仁. 汽车起重机支腿液压系统的可靠性分析[J]. 太原科技大学学报, 2016,37(6):468-474.
LUO Xi,GAO Congren. The Reliability Analysis of Hydraulic System of Truck Crane Outrigger [J]. Journal of Taiyuan University of Science and Technology, 2016, 37(6): 468-474.
[3]  Sunaryo, Hamka M A. Safety Risks Assessment on Container Terminal Using Hazard Identification and Risk Assessment and Fault Tree Analysis Methods [J]. Procedia Engineering, 2017, 194:307-314.
[4]  Purba J H, Tjahyani D T S, Ekariansyah A S, et al. Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty [J]. Annals of Nuclear Energy, 2015, 85:1189-1199.
[5]  Contini S, Matuzas V. Analysis of large fault trees based on functional decomposition [J]. Reliability Engineering & System Safety, 2011, 96(3):383-390.
[6] 杨国安, 乔舰, 宋征,等. 钻井泵阀寿命分析[J]. 振动与冲击, 2010, 29(1):58-61.
   YANG Guoan, QIAO Jian, SONG Zheng, et al. Service life analysis for a drilling pump valve [J].Journal of Vibration and Shock, 2010, 29(1):58-61.
[7] 汤东胜, 吴光强, 周凡华. 基于有限元法的ABS高速开关电磁阀性能分析[J]. 同济大学学报(自然科学版), 2003, 31(6):724-727.
    TANG Dongsheng, WU Guangqiang, ZHOU Fanhua. Analysis of Performance of ABS Soleniod Valve by Finite Element Analysis [J]. Journal of Tongji University(Natural Science), 2003, 31(6):724-727.
[8] 李受人, 程耕国. 液压阀性能的条件性仿真研究[J]. 武汉理工大学学报, 2008, 30(10):99-101.
    LI Shouren, CHEN Gengguo. Simulation for Characteristics of the Hydraulic Valve with Different Conditions[J].Journal of Wuhan University of Technology, 2008, 30(10):99-101.
[9]  Balaban E, Saxena A, Narasimhan S, et al. Prognostic Health-Management System Development for Electromechanical Actuators[J]. Journal of Aerospace Information Systems, 2015, 12(3):329-344.
[10] 李树勋, 李忠, 周爱民,等. 三通调节球阀节流盘开口型线优化及试验研究[J]. 华中科技大学学报(自然科学版), 2017, 42(2):61-66.
    LI Shuxun, LI Zhong, ZHOU Aimin, et al. Optimization and test on throttle plate opening profile line of 3-way control ball valve[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 42(2):61-66.
[11]  蔡伟, 郑贤林, 张志利,等. 液压电磁阀故障机理分析与瞬态特性仿真[J].仪器仪表学报,2011, 32(12):2726-2733.
CAI Wei, ZHENG Xianlin, ZHANG Zhili, et al. Failure mechanism analysis and transient characteristic simulation of hydraulic of hydraulic electromagnetic valve [J]. Journal of Instrument and Instrument, 2011, 32(12):2726-2733.
[12] Tang Baoping, Song Tao, Li Feng, et al. Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine [J]. Renewable Energy, 2014, 62(3):1-9.
[13] Mikhail B, Partha N. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Compution, 2014, 15(6):1373-1396.
[14] 孙劲光, 丁胜锋. 鲁棒性监督等距特征映射方法[J]. 中国矿业大学学报, 2017, 46(4):932-938.
    SUN Chenguang, DING Shengfeng. A robustness supervised isometric feature mapping method[J]. Journal of China University of Mining & Technology, 2017, 46(4):932-938.
[15] LIN Jinshan, CHEN Qian. Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and mahalanobis distance criterion[J]. Mechanical Systems and Signal Processing,2103,38(2):515-533.
[16] Xiao Qijun, Luo Zhonghui, Wu Junlan. Study on Wavelet Packet Denoising Technique and its Application in Mechanical Fault Diagnosis[J]. Applied Mechanics & Materials,2015,713-715:445-448.
[17] 王浩任, 黄亦翔, 赵帅,等. 基于小波包和拉普拉斯特征值映射的柱塞泵健康评估方法[J]. 振动与冲击, 2017, 36(22):45-50.
WANG Haoren, HUANG Yixiang, ZHAO Shuai, et al. Health assessment for piston pump based on WPD and LE[J]. Journal of Vibration and Shock, 2017, 36(22):45-50.
[18] Xiao Q J,Luo Z H,Wu J L. Study on Wavelet Packet Denoising Technique and its Application in Mechanical Fault Diagnosis[J]. Applied Mechanics & Materials,2015,713-715:445-448.

PDF(1311 KB)

306

Accesses

0

Citation

Detail

段落导航
相关文章

/