台风作用下输电塔线体系多元状态监测及风偏可靠度分析

卞荣1,徐卿2,俞恩科3,黄铭枫2,楼文娟2,胡文侃3,章李刚1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 52-59.

PDF(1569 KB)
PDF(1569 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 52-59.
论文

台风作用下输电塔线体系多元状态监测及风偏可靠度分析

  • 卞荣1,徐卿2,俞恩科3,黄铭枫2,楼文娟2,胡文侃3,章李刚1
作者信息 +

Multi-variate state monitoring and wind bias reliability analysis of a transmission tower-line system under action of typhoon

  • BIAN Rong1, XU Qing2, YU Enke3, HUANG Mingfeng2, LOU Wenjuan2,HU Wenkan3, ZHANG Ligang1
Author information +
文章历史 +

摘要

在舟山某输电线路上布设一套包含风速风向等气象要素以及塔线动力响应的多元状态监测系统。该监测系统获取了在2017年18号台风“泰利”影响下的输电塔线周边风场,导线风致振动以及动张力等现场实测数据。考虑结构参数的不确定性,建立了该输电线路有限元模型,开展了本次台风以及不同风灾水平下的导线风振反演分析,其中脉动风场是在数值模拟生成的基础上再与现场实测风速数据同化后得到。本次台风作用下的反演分析结果与实测值吻合较好,验证了随机风振反演分析结果的有效性。根据风偏响应结果,进一步完成了该输电线路可靠度分析,得到了风偏闪络失效的易损性曲线,从而评估了该输电线路在不同风灾作用下的风偏闪络危险程度。

Abstract

An on-line multi-variate state monitoring system containing wind velocity, wind direction and tower-line dynamic response, etc.was arranged on a transmission tower-line system located in Zhoushan, Zhejiang province.This monitoring system gained the actual measured data including wind field around the transmission tower, the line wind-induced vibration response and dynamic tension under 18# Typhoon Talim in 2017.Considering the uncertainty of structural parameters, the finite element model for the tower-line system was established to perform the inversion analysis of the line wind-induced vibration under typhoon Talim and different levels of other wind disasters.In the inversion analysis, the fluctuation wind field was obtained based on numerical simulation and assimilation with the measured wind velocity data.The inversion analysis results under typhoon Talim agreed better with the actual measured data to verify the effectiveness of the results of the stochastic wind-induced vibration inversion analysis.According to the results of wind bias response, the reliability analysis of the tower-line system was completed to gain its fragility curve of wind flashover failure, and estimate this tower-line system’s risk degree of wind flashover under action of different wind disasters.

关键词

输电线路 / 在线监测 / 台风 / 风荷载模拟 / 风振反演 / 易损性分析

Key words

transmission tower-line system / on-line monitoring / typhoon / wind load simulation / wind-induced vibration inversion analysis / fragility analysis

引用本文

导出引用
卞荣1,徐卿2,俞恩科3,黄铭枫2,楼文娟2,胡文侃3,章李刚1. 台风作用下输电塔线体系多元状态监测及风偏可靠度分析[J]. 振动与冲击, 2020, 39(3): 52-59
BIAN Rong1, XU Qing2, YU Enke3, HUANG Mingfeng2, LOU Wenjuan2,HU Wenkan3, ZHANG Ligang1. Multi-variate state monitoring and wind bias reliability analysis of a transmission tower-line system under action of typhoon[J]. Journal of Vibration and Shock, 2020, 39(3): 52-59

参考文献

[1] 安利强,张志强,黄仁谋等.台风作用下输电塔线体系动力响应分析[J].振动与冲击, 2017, 36(23): 255-262.
AN Liqiang, ZHANG Zhiqiang, HUANG Renmou, et al. Dynamic response analysis of a transmission tower-line system under typhoon[J]. Journal of Vibration and Shock, 2017, 36(23): 255-262.
[2] 汪江, 杜晓峰, 田万军,等. 500kV大跨越输电塔振动在线监测与模态分析系统[J]. 电网技术, 2010, 34(10):180-184.
WANG Jiang, DU Xiaofeng, Tian Wanjun, et al. Online vibration monitoring and modal analysis system of 500 kV long-span power transmission tower[J]. Power System Technology, 2010, 34(10):180-184.
[3] 朱晔, 王海涛, 吴念等. 输电线路覆冰在线监测动态预警模型[J]. 高电压技术, 2014, 40(05): 1374-1381.
ZHU Ye, WANG Haitao, WU Nian, et al. Icing On-line monitoring dynamic prediction model [J]. High Voltage Engineering, 2014, 40(05): 1374-1381.
[4] 彭康, 吴新桥, 耿力等. 输电塔台风振动响应在线监测的新型传感器设计[J]. 传感器与微系统, 2017, 36(05): 99-105.
PEND Kang, WU Xinqiao, Geng Li, et al. New type of sensor design for on-line monitoring of typhoon vibration response of transmission tower [J]. Transducer & Microsystem Technologies, 2017, 36(05): 99-105.
[5] 黄新波, 廖明进, 徐冠华等. 采用光纤光栅传感器的输电线路铁塔应力监测方法 [J]. 电力自动化设备, 2016, 36(04): 68-72.
HUANG Xinbo, LIAO Min-jin, XU Guanhua, et al. Stress monitoring method applying FBG sensor for transmission line towers[J]. Electric Power Automation Equipment, 2016, 36(04): 68-72.
[6] 赵桂峰, 李杰, 谢强等. 高压输电塔线耦联体系风振响应有限元分析与现场实测对比研究 [J]. 自然灾害学报, 2014, 23(1): 64-74.
ZHAO Guifeng, LI Jie, XIE Qiang, et al. Finite element analysis and field measurement of wind-induced vibration response of high-voltage transmission tower-line coupling system[J]. Journal of Natural Disasters, 2014, 23(1): 64-74.
[7] ZHANG M, ZHAO G F, WAND L L, et al. Wind-induced coupling vibration effects of high-voltage transmission tower-line systems [J]. Shock and Vibration, 2017, 2017: 1-34.
[8] 姚陈果,李宇,周泽宏,等. 基于极限承载力分析的覆冰输电塔可靠性评估[J]. 高电压技术, 2013, 39(11): 2609-2614.
YAO Chenguo, LI Yu, ZHOU Zheyu, et al. Reliability Evaluation for Iced Tower Based on Ultimate Bearing Capacity Analysis [J]. High Voltage Engineering, 2013(11): 2609-2614.
[9]  ASCE No.74 Guidelines for Electrical Transmission Line Structural Loading Third Editioni [S]. Virginia: American Society of Civil Engineers, 2010.
[10] 楼文娟, 罗罡, 胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
Lou W J, Luo G, Wen-Kan H U. Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines[J]. Journal of Zhejiang University, 2016, 50(11): 2120-2127.
[11] 黄江平,刘健文,董佩明等. 基于混合集合同化方案的台风“海鸥”的数值模拟研究[J]. 热带气象学报, 2014, 30(6): 1113-1118.
HUANG Jiangping, LIU Jianwen, DONG Peiming, et al. Application of the hybrid data assimilation system for typhoon Hai ou[J]. Journal of Tropical Meteorology, 2014, 30(6): 1113-1118.
[12]  XU Y L, HU L, Kareem A. Conditional simulation of nonstationary fluctuating wind speeds for long-span bridges [J]. Journal of Engineering Mechanics, 2014, 140 (1): 61-73.
[13] GB 50009-2012 建筑结构荷载规范 [S]. 北京:中国建筑工业出版社, 2012.
GB 50009-2012 Load code for the design of building structures [S]. Beijing: China Building Industry Press, 2012.
[14]  白海峰, 李宏男. 大跨越输电塔线体系随机脉动风场模拟研究 [J]. 工程力学, 2007, 24(7): 146-151.
BAI Haifeng, LI Hongnan. Simulation study of stochastic fluctuating wind field on large span electricity transmission tower-line system [J]. Engineering Mechanics, 2007, 24(7): 146-151.
[15]  HUANG M F, LOU W J, YANG L, el al. Experimental and computational simulation for wind effects on the Zhoushan transmission towers [J]. Structure and Infrastructure Engineering, 2012, 8(8): 781-799
[16]  黄铭枫, 徐卿, 吴承卉,等. 基于实测数据的香港K11大楼台风风场模拟与风振分析 [J]. 建筑结构学报, 2016, 37(12):1-9.
HUANG Mingfeng, XU Qing, WU Chenhui, et al. Typhoon velocity field simulation and wind-induced vibration analysis of the monitored K11 tall building in Hong Kong[J]. Journal of Building Structure, 2016, 37(12):1-9.
[17]  SIMIU E, SCANLAN R H. Wind effect on structure [M]. 3rd ed.New York: John Wiley and Sons, Inc, 1986,
[18] 蔡萌琦, 严波, 刘小会等. 多分裂导线风压阻力系数分析[J]. 重庆大学学报, 2013, 23(1): 110-120.
CAI Mengqi, YAN Bo, LIU Xiaohui, et al. Analysis on drag coefficients of bundled conductors under wind load [J]. Journal of Chongqing University, 2013, 23(1): 110-120.
[19]  楼文娟, 李天昊, 吕中宾. 多分裂子导线气动力系数风洞试验研究 [J]. 空气动力学学报, 2015, 33(06): 787-792.
LOU Wenjuan, LI Tianhao, LV Zhongbin, et al. Wind tunnel test on aerodynamic coefficients of multi-bundled sub-conductors [J]. Acta Aerodynamica Sinica, 2015, 33(06): 787-792.
[20]  王述良, 梁枢果, 邹良浩等. 输电导线气动阻尼效应的风洞试验研究[J]. 振动与冲击, 2016, 35(20):30-36.
WANG Shuliang, Liang Shuguo, ZHOU Lianghao, et al. Aerodynamic damping effects of a transmission conductor by wind tunnel tests[J]. Journal of Vibration and Shock, 2016, 35(20):30-36.
[21] 张殿生.电力工程高压送电线路设计手册[M].3版. 北京: 中国电力出版社, 2003.
ZHANG Diansheng. Design manual of power engineering high voltage transmission line[M]. 3rd ed. Beijing. China Electric Power Press, 2003.
[22]  郭志民, 王伟, 李哲,等. 强对流天气下输电线路多因素风险动态评估方法[J]. 电网技术, 2017,41(11):3598-3604.
GUO Zhimin, WANG Wei, LI Zhe, et al. Dynamic Multi-Risk Assessment Method of Transmission Lines Under Severe Convective Weather[J]. Power System Technology, 2017,41(11):3598-3604.
[23] 王海涛, 谷山强, 吴大伟,等. 基于数值天气预报的输电线路风偏闪络预警方法[J]. 电力系统保护与控制, 2017, 45(12):121-127.
[24]  FU X, LI H N, LI G. Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads[J]. Structural Safety, 2016, 58:1-10.
[25]  范存新, 葛义娇, 谢丽宇. 基于概率可靠度的输电塔风灾易损性分析[J]. 工业建筑, 2015, 45(7): 84-88.
FANG Cunxin, GE Yijiao, XIE Liyu. Wind disaster vulnerability analysis of the transmission tower based on probability reliability [J]. Industrial Construction, 2015, 45(7): 84-88.
WANG Haitao, GU Shanqiang, WU Dawei, et al. Method for windage yaw flashover warning of transmission lines based on numerical weather prediction[J]. Power System Protection and Control, 2017, 45(12):121-127.
[26]  GB 50545-2010 100kV~750kV架空输电线路设计规范 [S]. 北京, 中国计划出版社, 2010.
GB 50545-2010 Code for design of 110 kV~750kV overhead transmission line [S]. Beijing China Planning Press, 2010.
[27] Xiong X, Weng S, Wang J. An Online Early-Warning Method for Wind Swing Discharge of the Conductor Toward the Tangent Tower and Jumper Toward the Strain Tower[J]. IEEE Transactions on Power Delivery, 2015, 30(1):114-121.

PDF(1569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/