针对航空发动机双转子系统中低压转子初始弯曲问题,考虑中介支点轴心位置偏移,提出一种跨坐标系的双转子系统建模方法,这种方法能够解决高低、压转子运动形式不同而不能在统一坐标系下建模的问题,进而可以较准确模拟中介支点轴心偏移对双转子系统动力学影响。基于高低压转子的耦合运动行为,分别在不同坐标系下建立高、低压转子有限元模型,通过Lagrange方程得到高、低压转子的运动微分方程。通过对中介轴承的内外环自由度坐标变换实现了高低压转子的跨坐标系自由度耦合。低压转子的初始弯曲将导致自身的质量偏心和角度偏置,这将引起对低压转子的附加离心载荷和附加陀螺力矩;由于中介支点轴心位置偏移,高压转子的运动微分方程中具有时变刚度和时变阻尼项,其附加的激励载荷也比较复杂;中介轴承由于连接不同坐标系通过坐标变换产生时变刚度。通过算例对该模型的稳态响应分析,并与传统模型进行了对比。结果表明:当接近低压转子激励临界转速时,该模型的响应幅值较传统模型明显增大。
Abstract
Aiming at the problem of initial bending of low-pressure rotor existing in a dual-rotor system of aero-engine, considering intermediate bearing offset, the cross coordinate system modeling method for a dual-rotor system was proposed.This method could solve the problem of different motion forms of high-pressure (HP) rotor and low-pressure (LP) one leading to their modeling being not able to be done in a unified coordinate system.Firstly, finite element models of HP and LP rotors were built in different coordinate systems based on their coupled motion behavior.Then, differential equations of motion for HP and LP rotors were obtained with Lagrange equation.The coordinate transformation of inner and outer rings’ DOFs of intermediate bearing was used to realize HP and LP rotors’ cross coordinate system DOF coupling.LP rotor’s initial bending caused its mass eccentricity and angle skewing to bring its additional centrifugal load and gyroscopic moment.Due to intermediate bearing’s position offset, HP rotor’s differential equations of motion had time-varying stiffness and time-varying damping terms, so its additional excitation load were more complex.Intermediate bearing connected different coordinate systems, so it produced time-varying stiffness after coordinate transformation.Finally, some computation examples were used to compare the proposed model’s steady state responses with those of the traditional one.The results showed that the response amplitude of the proposed model is obviously larger than that of the tradition one when LP rotor’s rotating speed is close to its critical speed.
关键词
双转子 /
中介轴承 /
轴初始弯曲 /
基础激励 /
自由度耦合
{{custom_keyword}} /
Key words
dual-rotor /
intermediate bearing /
initial bending /
base excitation /
DOF coupling
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 晏砺堂等. 高速旋转机械振动[M].北京:国防工业出版社,1994:2-4.
YAN Li-tang, et al. Vibration of high-speed rotating machinery [M]. Beijing: China National Defense Industry,1994.
[2] 吴文青,谢诞梅,杨 毅,等. 具有初始弯曲的1000MW汽轮机低压转子的振动特征分析[J]. 振动与冲击. 2014,33(17): 150-153.
WU Wen-qing, XIE Dan-mei, YANG Yi, et al. analysis of vibration behavior for the bent rotor of a 1000MW turbine [J]. Journal of Vibration and Shock, 2014,33(17): 150-153.
[3] Song G F, Yang Z J, Ji C, et al. Theoretical–experimental study on a rotor with a residual shaft bow [J]. Mechanism & Machine Theory, 2013, 63(5): 50-58.
[4] Kang C H, Hsu W C, Lee E K, et al. Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect [J]. Mechanism & Machine Theory, 2011, 46(3): 264-275.
[5] 夏亚磊,杨建刚,张晓斌. 柔性转子转轴弯曲与不平衡耦合振动分析[J]. 动力工程学报,2016, 36(11):877-882.
XIA Ya-lei, YANG Jian-gang, ZHANG Xiao-bin. Analysis of Flexible Rotor Vibration Under Coupled Action of Shaft Bend and Rotor Unbalance [J]. Journal of Chinese Society of Power Engineering, 2016(11): 877-882.
[6] 金 海,刘继兴,张大义,等. 连接界面变形对转子动力特性影响的力学模型[J]. 北京航空航天大学学报,2017:1-9.
JIN Hai, LIU Ji-xing, ZHANG Da-yi, et al.Mechanical Models of Influence of Interface Deformation on RotorDynamic Characteristics[J].Journal of Beijing University of Aeronautics and Astronautics.2017:1-9.
[7] Dakel M Z, Baguet S, Dufour R. Steady-state dynamic behavior of an on-board rotor under combined base motions[J].Journal of Vibration & Control.2014,20(15):2254-2287.
[8] 颜文忠,Shaposhnikov Konstantin,张大义,等. 基础振动对转子系统动力特性影响的试验研究[J]. 推进技术,2016, 37(11):2157-2164.
YAN Wen-zhong, Shaposhnikov Konstantin, ZHANG Da-yi, et al. Experimental Investigation on Dynamic Characteristics of Rotor System Subject to Foundation Vibration [J]. Journal of Propulsion Technology, 2016, 37(11): 2157-2164.
[9] Chen L, Wang J, Han Q, et al. Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions [J]. Journal of Sound and Vibration, 2017, 404:58-83.
[10] 白雪川,曹树谦,杨蛟,等. 机动飞行时航空发动机反向旋转双转子动力学实验研究[J]. 机械科学与技术,2015, 34(4):623-628.
BAI Xue-chuan, CAO Shu-qian, YANG Jiao, et al. Experiment Research on Aero-engine Counter-rotating Dual-rotor Dynamics Subjected to Maneuvering Conditions [J]. Mechanical Science & Technology for Aerospace Engineering, 2015, 34(4): 623-628.
[11] 杨 蛟,曹树谦. 机动飞行条件下航空发动机双转子动力学实验研究[J]. 机械科学与技术,2014, 33(09):1434-1438.
YANG Jiao, CAO Shu-qian. Experimental Study on The Dual-rotor Dynamics of Aeroengine Subjected to Maneuvering Conditions [J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(09): 1434-1438.
[12] 李 杰,曹树谦,郭虎伦,等.机动飞行条件下双转子系统动力学建模与响应分析[J]. 航空动力学报,2017, 32(04):35-849.
LI Jie, CAO Shu-qian, GUO Hu-lun, et al. Modeling and response analysis of dual-rotor system under maneuvering flight [J]. Journal of Aerospace and Power, 2017, 32(04): 835-849.
[13] 林富生,孟 光. 有初弯的刚度非对称转子的动力学特性分析及实验研究[J]. 应用力学学报,2002, 19 (03):96-101.
LIN Fu-sheng, MENG Guang. Theoretical and Experimental Analysis on an Unbalanced Rotor with Asymmetric Rigidity and Initial Bending [J]. Chinese Journal of Applied Mechanics, 2002, 19(3): 96-101.
[14] Wang N, Xu H, Jiang D. Dynamic Model and Fault Feature Research of Dual-Rotor System with Bearing Pedestal Looseness [J]. Mathematical Problems in Engineering, 2016(2): 1-18.
[15] 孙传宗,陈予恕,侯 磊. 复杂结构双转子系统的建模及模型缩减[J]. 航空动力学报,2017, 32(07):1747-1753.
Sun C,Chen Y,Hou L.Modeling method and reduction of dual-rotor system with complicated structures[J]. Journal of Aerospace and Power. 2017, 32(07):1747-1753.
[16] 杨喜关,罗贵火,王 飞,等. 反向旋转双转子系统加速响应特性研究[J].振动与冲击,2014, 33(02): 105-111.
YANG Xi-guan, LUO Gui-huo, WANG Fei, TANG Zhen-huan. Research on acceleration response characteristics of the counter-rotating dual rotor system[J]. Journal of Vibration and Shock. 2014, 33(2):105-111.
[17] Lu Z,Hou L,Chen Y, et al.Nonlinear response analysis for a dual-rotor system with a breathing transverse crack in the hollow shaft[J].Nonlinear Dynamics.2016,83(1-2):169-185.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}