大型空间柔性桁架结构等效建模与动力学分析

刘梅1,曹登庆1,黄庭轩2,孙禄君2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 69-75.

PDF(1533 KB)
PDF(1533 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 69-75.
论文

大型空间柔性桁架结构等效建模与动力学分析

  • 刘梅1,曹登庆1,黄庭轩2,孙禄君2
作者信息 +

Equivalent modeling and dynamic analysis for large flexible space truss structures

  • LIU Mei1, CAO Dengqing1, HUANG Tingxuan2, SUN Lujun2
Author information +
文章历史 +

摘要

大型空间柔性桁架结构具有周期性、大柔度、构型复杂等特点,其等效建模是进行振动控制器设计的关键性技术之一。基于能量等效原理和经典Timoshenko梁理论,对刚性连接的大型空间柔性正三棱柱桁架结构进行了等效建模与动力学分析,采用Taylor展开方法推导了等效梁模型的刚度和质量表达式,对比分析桁架结构与等效梁模型的固有振动特性,二者吻合较好。数值结果表明了等效方法的有效性且等效梁模型具有较高的精度。

Abstract

Large flexible space truss structures have features of periodicity, large flexibility and complex configuration, their equivalent modeling is one of key techniques to design vibration controllers.Here, based on the energy equivalent principle and the classical Timoshenko beam theory, equivalent modeling and dynamic analysis were conducted for a large space flexible positive triangular prism truss structure with rigid joints.Taylor expansion method was used to derive its equivalent beam model’s stiffness and mass expressions, and the natural vibration characteristics of the truss structure and its equivalent beam were analyzed contrastively.Both of them agreed better with each other.The numerical results showed that the proposed equivalent approach is effective; the equivalent beam model has a higher accuracy.

关键词

大型空间柔性桁架结构 / 周期性 / 能量等效原理 / 等效梁模型 / 固有振动特性

Key words

large flexible space truss structure / periodicity / energy equivalent principle / equivalent beam model / natural vibration characteristics

引用本文

导出引用
刘梅1,曹登庆1,黄庭轩2,孙禄君2. 大型空间柔性桁架结构等效建模与动力学分析[J]. 振动与冲击, 2020, 39(3): 69-75
LIU Mei1, CAO Dengqing1, HUANG Tingxuan2, SUN Lujun2. Equivalent modeling and dynamic analysis for large flexible space truss structures[J]. Journal of Vibration and Shock, 2020, 39(3): 69-75

参考文献

[1] Noor A K. Continuum modeling for repetitive lattice structures [J]. Applied Mechanics Reviews, 1988, 41(7): 285-296.
[2] Noor A K, Anderson M S, Greene W H. Continuum models for beam- and platelike lattice structures [J]. AIAA Journal, 1978, 16(12): 1219-1228.
[3] Noor A K, Nemeth M P. Analysis of spatial beamlike lattices with rigid joints [J]. Computer Methods in Applied Mechanics and Engineering, 1980, 24(1): 35-59.
[4] Noor A K, Nemeth M P. Micropolar beam models for lattice grids with rigid joints [J]. Computer Methods in Applied Mechanics and Engineering, 1980, 21(2): 249-263.
[5] Lee U. Dynamic continuum modeling of beamlike space structures using finite-element matrices [J]. AIAA Journal, 1990, 28(4): 725-731.
[6] Burgardt B, Cartraud P. Continuum modeling of beamlike lattice trusses using averaging method [J]. Computers and Structures, 1999, 73(1): 267-279.
[7] Necib B, Sun C T. Analysis of truss beams using a high order Timoshenko beam finite element [J]. Journal of Sound and Vibration, 1989, 130(1): 149-159.
[8] Moreau G, Caillerie D. Continuum modeling of lattice structures in large displacement applications to buckling analysis [J]. Computers and Structures, 1998, 68(1-3): 181-189.
[9] Stephen N G, Zhang Y. Coupled tension–torsion vibration of repetitive beam-like structures [J]. Journal of Sound and Vibration, 2006, 293(1-2): 253-265.
[10] Stephen N G, Zhang Y. Eigen-analysis and continuum modelling of an asymmetric beam-like repetitive structure [J]. International Journal of Mechanical Sciences, 2004, 46(8): 1213-1231.
[11] Salehian A, Inman D J. Micropolar continuous modeling and frequency response validation of a lattice structure [J]. Journal of Vibration and Acoustics, 2010, 132(1): 256-280.
[12] Salehian A, Seigler T M, Inman D J. Dynamic effects of a radar panel mounted on a truss satellite [J]. AIAA Journal, 2007, 45(7): 1642-1654.
[13] Salehian A, Inman D J. Dynamic analysis of a lattice structure by homogenization:experimental validation [J]. Journal of Sound and Vibration, 2008, 316(1-5): 180-197.
[14] Kebiche K, Aoual K M N, Motro R. Continuum models for systems in a selfstress state [J]. International Journal of Space Structures, 2009, 23(2): 103-115.
[15] Murphey T W. Symbolic equations for the stiffness and strength of straight longeron trusses [C]. Structural Dynamics and Materials Conference, Newport, Rhode Island, May 1-4, 2006.
[16] Guo H W, Shi C, Li M, et al. Design and dynamic equivalent modeling of double-layer hoop deployable antenna [J]. International Journal of Aerospace Engineering, 2018, 2018(4): 1-15.
[17] 陈素芳, 谭志勇, 姜东, 等. 高温环境下纤维增强复合材料等效参数预测[J]. 振动与冲击, 2018, 37(11): 216-224.
CHEN Sufang, TAN Zhiyong, JIANG Dong, et al. Equivalent parametric prediction for fiber reinforced composites under high temperature condition [J]. Journal of Vibration and Shock, 2018, 37(11): 216-224.
[18] 刘福寿, 金栋平, 陈辉. 环形桁架结构动力分析的等效力学模型[J]. 振动工程学报, 2013, 26(4): 516-521.
LIU Fushou, JIN Dongping, CHEN Hui. An equivalent mechanics model for the dynamic analysis of hoop truss structures [J]. Journal of Vibration Engineering, 2013, 26(4): 516-521.
[19] Liu F S, Jin D P, Wen H. Equivalent dynamic model for hoop truss structure composed of planar repeating elements [J]. AIAA Journal, 2017, 55(3): 1-6.
[20] 董纪伟, 孙良新, 洪平. 基于均匀化方法的三维编织复合材料等效弹性性能预测[J]. 宇航学报, 2005, 26(4): 482-486. DONG Jiwei, SUN Liangxin, HONG Ping. Homogenization- base method for predicting effective elastic properties of three-dimensional braided composites [J]. Journal of Astronautics, 2005, 26(4): 482-486.

PDF(1533 KB)

730

Accesses

0

Citation

Detail

段落导航
相关文章

/