风雨激振时水线与拉索双向耦合的三维数值模拟

王剑1,毕继红2,逯鹏3,关健2,乔浩玥2,周燕1,郭红梅1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 8-15.

PDF(2392 KB)
PDF(2392 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 8-15.
论文

风雨激振时水线与拉索双向耦合的三维数值模拟

  • 王剑1,毕继红2,逯鹏3,关健2,乔浩玥2,周燕1,郭红梅1
作者信息 +

3-D numerical simulation for bi-directional coupling between waterline motion and cable’s rain-wind induced vibration

  • WANG Jian1, BI Jihong2, LU Peng3, GUAN Jian2, QIAO Haoyue2, ZHOU Yan1, GUO Hongmei1
Author information +
文章历史 +

摘要

基于滑移理论推导出三维节段斜拉索气动升力的计算公式;考虑水线运动、气流变化和拉索振动之间的相互影响,将三维水膜运动方程与单自由度振动理论相结合建立双向耦合的三维风雨激振数学模型,研究三维刚性节段斜拉索表面水膜形态变化规律、拉索升力及其振动规律。结果表明:应用三维滑移理论模型数值模拟得到的拉索表面上下水线的位置、形态、厚度及环向振荡范围均与实验结果相近;上水线的环向周期性运动导致拉索升力周期性变化,二者步调一致且频率相同,均接近拉索自振频率,引发拉索大幅度自激振动。

Abstract

Here, the calculation formula for aerodynamic lift force of 3-D segmental stayed cable was derived based on the slip theory.Considering mutual interactions among waterline motion, airflow variation and cable vibration, combining the 3-D water film motion equation and the single-DOF vibration theory, the 3-D mathematic model for bi-directional coupling between waterline motion and cable’s rain-wind induced vibration was established to study morphological change law of water film on surface of a 3-D cable segment, and variation laws of cable lift force and vibration.The results showed that position, morphology, thickness and circumferential oscillatory range of upper and lower waterlines obtained with the 3-D model’s numerical simulation and the slip theory are all close to test results; circumferential periodic motion of upper waterline causes periodic variation of cable lift force with the same pace and the same frequency, this frequency is close to cable’s natural frequency to cause cable’s large amplitude self-excited vibration.

关键词

风雨激振 / 斜拉索 / 滑移理论 / 三维数值模拟 / 水线

Key words

rain-wind induced vibration / stayed cable / slip theory / 3-D numerical simulation / waterline

引用本文

导出引用
王剑1,毕继红2,逯鹏3,关健2,乔浩玥2,周燕1,郭红梅1. 风雨激振时水线与拉索双向耦合的三维数值模拟[J]. 振动与冲击, 2020, 39(3): 8-15
WANG Jian1, BI Jihong2, LU Peng3, GUAN Jian2, QIAO Haoyue2, ZHOU Yan1, GUO Hongmei1. 3-D numerical simulation for bi-directional coupling between waterline motion and cable’s rain-wind induced vibration[J]. Journal of Vibration and Shock, 2020, 39(3): 8-15

参考文献

[1] Hikami Y, Shiraishi N. Rain-wind-induced vibrations of cables in cable stayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 29, 409-418.
[2]  Ni Y Q, Wang X Y, Chen Z Q, Ko J M. Field Observations of rain wind induced cable vibration in cable stayed Dongting Lake Bridge [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95, 303-328.
[3]  Gu M, Huang L. Theoretical and experimental studies on the aerodynamic instability of a two-dimensional circular cylinder with a moving attachment [J]. Journal of Fluids and Structures, 2008, 24, 200-211.
[4] Li F C, Chen W L, Li H. An ultrasonic transmission thickness measurement system for study of water rivulets characteristics of stay cables suffering from wind-rain-induced vibration [J]. Sensors and Actuators A: Physical, 2010, 159, 12-23.
[5] Li Y L, Jing H Q, Xia Y, Xu Y L, Xiang H Y. Measurement of rivulet movement on inclined cables during rain–wind induced vibration [J]. Sensors and Actuators A: Physical, 2015, 230, 17-24.
[6] Ge Y J, Chang Y, Xu L S, Zhao L. Experimental investigation on spatial attitudes, dynamic characteristics and environmental conditions of rain–wind-induced vibration of stay cables with high-precision raining simulator [J]. Journal of Fluids and Structures, 2018, 76, 60–83.
[7] Lemaitre C, Hemon P, Lamngre E. Thin water film around a cable subject to Wind [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95, 1259-1271.
[8] Taylor I J, Robertson A C. Numerical simulation of the airflow-rivulet interaction associated with the rain-wind induced vibration phenomenon [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99, 931-944.
[9]  许林汕, 葛耀君, 赵林. 高精度风雨模拟环境下拉索风雨激振试验研究新发现[J], 土木工程学报, 2011, 44, 86-93.
Xu L S, Ge Y J, Zhao L. Experimental study of rain and wind induced vibration of stay cables using high precision rain simulation system [J]. China Civil Engineering Journal , 2011, 44, 86-93.
[10]  毕继红, 王剑, 逯鹏, 鲍春. 斜拉索表面水膜形态及斜拉索气动力变化规律[J], 天津大学学报自然科学与工程技术版, 2014, 47, 479-490.
Bi J H, Wang J, Lu P, Bao C. Variation of Water Film Morphology and Aerodynamic Force of Stay Cable [J]. Journal of Tianjin University (Science and Technology) , 2014, 47, 479-490.
[11] Bi J H, Wang J, Lu P, et al. 2D numerical analysis on evolution of water film and cable vibration response subject to wind and rain [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 121, 49-59.
[12] Bi J H, Guan J, Wang J, Lu P, Qiao H Y, Wu J. 3D numerical analysis on wind and rain induced oscillations of water film on cable surface [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 176, 273-289.
[13] 王剑, 毕继红, 何旭辉, 关健, 乔浩玥, 邵倩. 风雨激振中斜拉索倾角对水线及拉索振动的影响[J], 振动工程学报, 2018, 31, 57-66.
Wang J, Bi J H, He X H, Guan J, Qiao H Y, Shao Q. The effects of cable inclination on rivulet and rain-wind induced vibration of stay cable [J]. Journal of Vibration Engineering, 2018, 31, 57-66.

PDF(2392 KB)

435

Accesses

0

Citation

Detail

段落导航
相关文章

/