高压降迷宫套筒组合调节阀涡激振动仿真研究

李树勋1,2,张万年1,2,王伟波1,2,徐晓刚1,2,朱禄 1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 95-103.

PDF(3089 KB)
PDF(3089 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (3) : 95-103.
论文

高压降迷宫套筒组合调节阀涡激振动仿真研究

  • 李树勋1,2,张万年1,2,王伟波1,2,徐晓刚1,2,朱禄 1,2
作者信息 +

Simulation for VIV of high pressure drop labyrinth-sleeve combined regulating valves

  • LI Shuxun1,2, ZHANG Wannian1,2, WANG Weibo1,2, XU Xiaogang1,2, ZHU Lu1,2
Author information +
文章历史 +

摘要

针对高压降类调节阀涡激振动现象,设计多通道迷宫盘片和多级套筒组合高压降调节阀。基于计算流体动力学(CFD)和流固耦合模态分析法,计算调节阀内部瞬态流场及结构模态,得到其三种典型开度的流体流动情况,升力系数时域和频域特性曲线,以及模态频率和模态振型。分析结果表明:4 s时刻,随调节阀开度减小,流体最大流速相应减小,第四级套筒外部流道区域的大涡逐渐形成小涡。调节阀全开时流体升力系数波动比70%和40%开度时更为剧烈,一阶模态频率、二阶模态频率均随开度的增大而增大。调节阀模态频率没有落在漩涡脱落主频率范围内,调节阀不会发生涡激振动锁定现象。

Abstract

Aiming at vortex-induced vibration (VIV) phenomena of high pressure drop type regulating valves, a high pressure drop regulating valve with combination of multi-channel labyrinth discs and multi-stage sleeves was designed.Based on CFD and the fluid-structure coupled modal analysis, inner transient flow field and structural modes of the valve were calculated to obtain its 3 typical open fluid flow cases, lift coefficient’s time domain and frequency domain characteristic curves as well as modal frequencies and modal shapes.The results showed that at 4 s time instant, with decrease in the valve’s opening, the maximum flow velocity of fluid decreases, and large vortex in outer flow channel of the fourth-stage sleeve gradually forms small one; fluctuation of fluid lift coefficient during the valve being fully open is more violent than those during the valve having 70% and 40% openings, the 1st and 2nd order modal frequencies of the valve increase with increase in valve opening; the valve’s modal frequencies don’t fall in range of vortex shedding main frequency, the valve can’t have VIV locking phenomenon.

关键词

高压降 / 迷宫套筒 / 计算流体动力学 / 瞬态流场 / 涡激振动

Key words

high pressure drop / labyrinth sleeve / computational fluid dynamics (CFD) / transient flow field / vortex-induced vibration (VIV)

引用本文

导出引用
李树勋1,2,张万年1,2,王伟波1,2,徐晓刚1,2,朱禄 1,2. 高压降迷宫套筒组合调节阀涡激振动仿真研究[J]. 振动与冲击, 2020, 39(3): 95-103
LI Shuxun1,2, ZHANG Wannian1,2, WANG Weibo1,2, XU Xiaogang1,2, ZHU Lu1,2 . Simulation for VIV of high pressure drop labyrinth-sleeve combined regulating valves[J]. Journal of Vibration and Shock, 2020, 39(3): 95-103

参考文献

[1] Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping[J]. Journal of Fluid Mechanics, 2004, 509(509):23-62.
[2] Govardhan R N, Williamson C H K. Defining the `modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping[J]. Journal of Fluid Mechanics, 2006, 561(561):147-180.
[3] 康庄, 张立健, 倪问池. 考虑迟滞效应的圆柱体涡激振动分析研究[J]. 振动与冲击, 2017, 36(24):220-229.
Kang Z, Zhang L, Wenchi N I. Vortex-induced vibration of a cylinder considering hysteretic effect[J]. Journal of Vibration & Shock, 2017, 36(24):220-229.
[4] 高云, 杨家栋, 邹丽,等. 表面粗糙度对圆柱体涡激振动响应特性影响数值研究[J]. 振动与冲击, 2018, 37(9).
Gao Y, Yang J, Li Z, et al. Effects of surface roughness on vortex induced vibration features of a circular cylinder[J]. Journal of Vibration & Shock, 2018, 37(9).
[5] 康庄, 倪问池. 考虑旋转自由度的涡激振动数值模拟研究[J]. 振动与冲击, 2018, 37(9).
Kang Z, Wenchi N I. Numerical simulation of vortex induced vibration considering rotational-DOF[J]. Journal of Vibration & Shock, 2018,37(9).
[6] 袁昱超, 薛鸿祥, 唐文勇. 计及附加质量系数变化效应的立管涡激振动时域响应研究[J]. 振动与冲击, 2018, 37(1):53-59.
Yuan Y, Xue H, Tang W. Time domain vortex-induced vibration responses of a riser in consideration of the variation effect of added mass coefficient[J]. Journal of Vibration & Shock, 2018,37(1):53-59.
[7] Jin Z J, Wei L, Chen L L, et al. Numerical simulation and structure improvement of double throttling in a high parameter pressure reducing valve[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2013, 14(2):137-146.
[8] Jin Z J, Chen F Q, Qian J Y, et al. Numerical analysis of flow and temperature characteristics in a high multi-stage pressure reducing valve for hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2016, 41(12):5559-5570.
[9] Qian J Y, Zhang M, Lei L N, et al. Mach number analysis on multi-stage perforated plates in high pressure reducing valve[J]. Energy Conversion & Management, 2016, 119:81-90.
[10] Hou C W, Qian J Y, Chen F Q, et al. Parametric analysis on throttling components of high multi-stage pressure reducing valve[J]. Applied Thermal Engineering, 2017, 128:1238-1248.
[11] 陶国庆, 刘建峰, 张绍华,等. 迷宫式调节阀流量特性的数值模拟[J]. 流体机械, 2014(11):50-53.
             Tao G Q, Liu J F, Zhang S H, et al. Numerical Simulation on Flow Character of Labyrinth Type Regulating Valve[J]. Fluid Machinery, 2014(11):50-53.
[12] 李树勋, 侯英哲, 徐晓刚,等. 高压差迷宫式调节阀盘片降压级数[J]. 排灌机械工程学报, 2013, 31(12):1072-1076.
             Li S, Hou Y, Xu X, et al. Depressurization stage number of disc in high pressure drop labyrinth control valve[J]. Journal of Drainage & Irrigation Machinery Engineering, 2013, 31(12):1072-1076.
[13] 王海民, 孔祥帅, 刘欢. 三偏心蝶阀振动特性分析[J]. 振动与冲击, 2018(5).
Wang H, Kong X, Liu H. Vibration characteristics analysis for a tri-eccentric butterfly valve[J]. Journal of Vibration & Shock, 2018(5).
[14] Miller H L, Stratton L R. Fluid Kinetic Energy as a Selection Criteria for Control Valves[J]. Asme Fluids Engineering Division, 1997:22-26
[15] Sherikar S V, Nagpal V. Fluid Kinetic Energy Based Limits in the Design of Control Valves and Valve-Related Systems[C]. Asme/jsme Joint Fluids Engineering Conference. 2007:1293-1300.
[16] 瓦格纳. 水和蒸汽的性质[M]. 科学出版社, 2003
[17] H.Xu, Z.M. Guang, Y.Y. Qi, Hydrodynamic characterization and optimization of Contra-push check valve by numerical simulation[J]. Ann. Nucl. Energy 2011, 38 (6):1427–1437.
[18] 黄维平, 魏东泽, 陈海明,等. 尾流干涉及边界效应对两圆柱体涡激振动影响[J]. 振动与冲击, 2012, 31(22):8-12.
Huang W P, Wei D Z, Chen H M. Effects of wake interference and boandary effect on vortex-induced vibration of two tandem and side-by-side cylinders[J]. Journal of Vibration & Shock, 2012, 31(22):8-12.
[19] 李少华, 吕敏, 张玲,等. 非定常尾迹及其对动叶气膜冷却影响的数值研究[J]. 动力工程学报, 2011, 31(12):922-927.
Shao-Hua L I, Zhi-Jun L I, Hong-Wei Q U, et al. Numerical Simulation Study on the Effect of Unsteady Wakes on Leading Edge Film Cooling[J]. Power System Engineering, 2011, 31(12):922-927.
[20] American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section II, Part D[S]. 2015.

PDF(3089 KB)

Accesses

Citation

Detail

段落导航
相关文章

/