非线性能量阱技术研究综述

鲁正1,2,王自欣2,吕西林1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 1-16.

PDF(2572 KB)
PDF(2572 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 1-16.
论文

非线性能量阱技术研究综述

  • 鲁正1,2,王自欣2,吕西林1,2
作者信息 +

A review on nonlinear energy sink technology

  • LU Zheng1,2,WANG Zixin2,LV Xilin1,2
Author information +
文章历史 +

摘要

结构振动问题普遍存在于各个工程领域,有效地抑制结构振动对提高零件的加工质量、延长机械的使用寿命以及增加结构的安全性与舒适度至关重要。非线性能量阱以其轻质,鲁棒性强,减振频带宽等优点,在非线性消能减振方面具有良好的应用前景;介绍了非线性能量阱的基本概念、发展与研究现状,综述了非线性能量阱在土木工程、航空航天领域、机械领域、生命线工程以及能量采集中的应用进展。在此基础上,对非线性能量阱的设计与应用进行了评述,指出其在工程应用中的优势与不足,并针对实际工程可能遇到的问题提出了建议,对非线性能量阱技术的后续研究进行了展望。

Abstract

Structural vibration is a common phenomenon in various engineering fields, while the effective suppression of structural vibration is conducive to enhancing the quality of manufactured parts, prolonging the service life of machines, and promoting the safety and comfort of structures.The nonlinear energy sink (NES) has great application potential in nonlinear vibration energy dissipation due to its light weight, high robustness, and wide frequency band of vibration attenuation.The basic concept, development, and research status of the NES were introduced; the engineering applications of the NES in civil engineering, aerospace field, machinery field, offshore engineering and vibration energy harvesting were reviewed.Based on that, some remarks on the design and application of the NES were provided, in which the advantages and disadvantages of the NES in engineering application were pointed out.To tackle certain problems that may appear in practical engineering, several recommendations were also proposed.Finally, the further studies pertaining to NES technology were discussed.

关键词

非线性能量阱 / 非线性阻尼器 / 刚度非线性 / 消能减振 / 结构振动控制 / 颗粒阻尼

Key words

nonlinear energy sink / nonlinear damper / nonlinear stiffness / vibration energy dissipation / structural vibration control / particle damping

引用本文

导出引用
鲁正1,2,王自欣2,吕西林1,2. 非线性能量阱技术研究综述[J]. 振动与冲击, 2020, 39(4): 1-16
LU Zheng1,2,WANG Zixin2,LV Xilin1,2. A review on nonlinear energy sink technology[J]. Journal of Vibration and Shock, 2020, 39(4): 1-16

参考文献

[1] Quintana G, Ciurana J. Chatter in machining processes: A review [J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 363-376.
[2] Gharib M, Omran A, El-Bayoumi G. Optimal vibration control for structural-acoustic coupling system [J]. Journal of Vibration and Control, 2013, 19(1): 14-29.
[3] Soong T T, Spencer B F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice [J]. Engineering Structures, 2002, 24(3): 243-259.
[4] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future [J]. Journal of Engineering Mechanics, ASCE, 1997, 123(9): 897-971.
[5] Yao J T P. Concept of Structural Control [J]. Journal of the Structural Division, 1972, 98(7): 1567-1574.
[6] Symans M D, Charney F A, Whittaker A S, et al. Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments [J]. Journal of Structural Engineering, 2008, 134(1): 3-21.
[7] Saaed T E, Nikolakopoulos G, Jonasson J-E, et al. A state-of-the-art review of structural control systems [J]. Journal of Vibration and Control, 2015, 21(5): 919-937.
[8] Zhang B, Billings S A, Lang Z-Q, et al. Suppressing Resonant Vibrations Using Nonlinear Springs and Dampers [J]. Journal of Vibration and Control, 2009, 15(11): 1731-1744.
[9] Yamaguchi H, Harnpornchai N. Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced-oscillations [J]. Earthquake Engineering & Structural Dynamics, 1993, 22(1): 51-62.
[10] Xue S D, Ko J M, Xu Y L. Optimal performance of the TLCD in structural pitching vibration control [J]. Modal Analysis, 2002, 8(5): 619-642.
[11] Alexander N A, Schilder F. Exploring the performance of a nonlinear tuned mass damper [J]. Journal of Sound and Vibration, 2009, 319(1): 445-462.
[12] Khansefid A, Ahmadizadeh M. An investigation of the effects of structural nonlinearity on the seismic performance degradation of active and passive control systems used for supplemental energy dissipation [J]. Journal of Vibration & Control, 2015, 79(6): 2987-3000.
[13] Chen S-H, Zheng L-A, Chou J-H. A Mixed Robust/Optimal Active Vibration Control for Uncertain Flexible Structural Systems with Nonlinear Actuators Using Genetic Algorithm [J]. Journal of Vibration and Control, 2007, 13(2): 185-201.
[14] Marano G C, Greco R. Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation [J]. Journal of Vibration and Control, 2011, 17(5): 679-688.
[15] Frahm H. Device for Damping Vibrations of Bodies: United States, US Patent 0989958 [P]. 1911.
[16] Hartog J P D. Mechanical Vibrations [M]. New York: McGraw-Hill Book Company, 1947.
[17] Tigli O F. Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads [J]. Journal of Sound and Vibration, 2012, 331(13): 3035-3049.
[18] Davis C L, Lesieutre G A. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness [J]. Journal of Sound and Vibration, 2000, 232(3): 601-617.
[19] Sun J Q, Jolly M R, Norris M A. Passive, adaptive and active tuned vibration absorbers—A survey [J]. Journal of Mechanical Design, 1995, 117(B): 234-242.
[20] Kela L, Vähäoja P. Recent studies of adaptive tuned vibration absorbers/neutralizers [J]. Applied Mechanics Reviews, 2009, 62(6): 1-9.
[21] Lee Y S, Vakakis A F, Bergman L A, et al. Passive non-linear targeted energy transfer and its applications to vibration absorption: A review [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2008, 222(2): 77-134.
[22] Arnold F R. Steady-state behavior of systems provided with nonlinear dynamic vibration absorbers [J]. Journal of Applied Mechanics, 1955, 22: 487-492.
[23] Pipes L A. Analysis of a nonlinear dynamic vibration absorber [J]. Journal of Applied Mechanics, 1953, 20: 515-518.
[24] Roberson R E. Synthesis of a nonlinear dynamic vibration absorber [J]. Journal of the Franklin Institute, 1952, 254(3): 205-220.
[25] Vakakis A F. Inducing Passive Nonlinear Energy Sinks in Vibrating Systems [J]. Journal of Vibration and Acoustics, 2001, 123(3): 324-332.
[26] 熊怀, 孔宪仁, 刘源. 阻尼对耦合非线性能量阱系统影响研究 [J]. 振动与冲击, 2015, 34(11): 116-121.
XIONG Huai, KONG Xianren, LIU Yuan. Influence of structural damping on a system with nonlinear energy sinks [J]. Journal of Vibration and Shock, 2015, 34(11): 116-121.
[27] 刘中坡, 吕西林, 王栋, 等. 非线性能量阱刚度优化计算与振动台试验 [J]. 振动与冲击, 2016, 35(20): 77-84+103. LIU Zhongpo, LU Xilin, WANG Dong, et al. Stiffness optimization of nonlinear energy sink and shaking table test [J]. Journal of Vibration and Shock, 2016, 35(20): 77-84+103.
[28] 陈勇, 徐羿. 基于非线性能量吸振器的高耸结构减振分析 [J]. 振动与冲击, 2014, 33(09): 27-32+54.
CHEN Yong, XU Yi. Vibration suppression analysis for a tall structure attached with a nonlinear energy sink absorber [J]. Journal of Vibration and Shock, 2014, 33(09): 27-32+54.
[29] Vakakis A F, Gendelman O V, Bergman L A, et al. Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems [M]. Berlin, New York: Springer-Verlag, 2008.
[30] Gourdon E, Alexander N A, Taylor C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results [J]. Journal of Sound and Vibration, 2007, 300(3–5): 522-551.
[31] Neishtadt A. Scattering by resonances [J]. Celestial Mechanics and Dynamical Astronomy, 1996, 65(1): 1-20.
[32] Gendelman O, Manevitch L I, Vakakis A F, et al. Energy pumping in nonlinear mechanical oscillators: Part I—Dynamics of the underlying hamiltonian systems [J]. Journal of Applied Mechanics, 2000, 68(1): 34-41.
[33] Vakakis A F, Gendelman O. Energy pumping in nonlinear mechanical oscillators: Part II—Resonance capture [J]. Journal of Applied Mechanics, 2000, 68(1): 42-48.
[34] Quinn D, Rand R, Bridge J. The dynamics of resonant capture [J]. Nonlinear Dynamics, 1995, 8(1): 1-20.
[35] Ahmadabadi Z N, Khadem S E. Nonlinear vibration control of a cantilever beam by a nonlinear energy sink [J]. Mechanism and Machine Theory, 2012, 50: 134-149.
[36] Vakakis A F, Manevitch L I, Gendelman O, et al. Dynamics of linear discrete systems connected to local, essentially non-linear attachments [J]. Journal of Sound and Vibration, 2003, 264(3): 559-577.
[37] Gendelman O V. Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment [J]. Nonlinear Dynamics, 2004, 37(2): 115-128.
[38] Guckenheimer J, Holmes P J. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields [M]. Springer-Verlag New York, 1983.
[39] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos [M]. Springer-Verlag New York, 2003.
[40] Starosvetsky Y, Gendelman O V. Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning [J]. Journal of Sound and Vibration, 2008, 315(3): 746-765.
[41] Sigalov G, Gendelman O V, Al-Shudeifat M A, et al. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling [J]. Chaos, 2012, 22(1).
[42] 刘树勇, 位秀雷, 王基, 等. 基于双势阱系统的混沌振动研究 [J]. 振动与冲击, 2017, 36(24): 23-29+43.
LIU Shuyong,WEI Xiulei,WANG Ji,et al. Chaotic vibration study based on two-well potential theory [J]. Journal of Vibration and Shock, 2017, 36(24): 23-29+43.
[43] 李海勤. 带有阻尼非线性的能量阱振动抑制效果研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015.
LI Haiqin. Research on energy sink with geometrically nonlinear damping for vibration suppression [D]. Harbin: Harbin Institute of Technology, 2015.
[44] Gendelman O V, Alloni A. Dynamics of forced system with vibro-impact energy sink [J]. Journal of Sound and Vibration, 2015, 358: 301-314.
[45] Yoshitake Y, Sueoka A. Quenching of Self-Excited Vibrations by an Impact Damper [J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1994, 60(569): 50-56.
[46] Wang J J, Wierschem N E, Spencer B F, et al. Track nonlinear energy sink for rapid response reduction in building structures [J]. Journal of Engineering Mechanics, 2015, 141(1).
[47] Gendelman O V, Gourdon E, Lamarque C H. Quasiperiodic energy pumping in coupled oscillators under periodic forcing [J]. Journal of Sound and Vibration, 2006, 294(4–5): 651-662.
[48] Tripathi A, Grover P, Kalmár-Nagy T. On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems [J]. Journal of Sound and Vibration, 2017, 388: 272-297.
[49] Guo C, Al-Shudeifat M A, Vakakis A F, et al. Vibration reduction in unbalanced hollow rotor systems with nonlinear energy sinks [J]. Nonlinear Dynamics, 2015, 79(1): 527-538.
[50] Gourdon E, Lamarque C H. Nonlinear energy sink with uncertain parameters [J]. Journal of Computational and Nonlinear Dynamics, 2006, 1(3): 187-195.
[51] 杨凯, 张业伟, 丁虎, 等. 基于非线性输出频响函数的NES动力学参数设计 [J]. 振动与冲击, 2016, 35(21): 76-80+86.
YANG Kai, ZHANG Yewei, DING Hu, et al. Parametric design of nonlinear energy sinks based on nonlinear output frequency-response functions [J]. Journal of Vibration and Shock, 2016, 35(21): 76-80+86.
[52] Starosvetsky Y, Gendelman O V. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber [J]. Nonlinear Dynamics, 2008, 51(1-2): 47-57.
[53] Wierschem N E, Quinn D D, Hubbard S A, et al. Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment [J]. Journal of Sound and Vibration, 2012, 331(25): 5393-5407.
[54] Parseh M, Dardel M, Ghasemi M H. Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam [J]. Nonlinear Dynamics, 2015, 81(4): 1981-2002.
[55] Gendelman O V, Starosvetsky Y, Feldman M. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes [J]. Nonlinear Dynamics, 2008, 51(1): 31-46.
[56] Gendelman O V. Targeted energy transfer in systems with non-polynomial nonlinearity [J]. Journal of Sound and Vibration, 2008, 315(3): 732-745.
[57] Lamarque C-H, Gendelman O V, Ture Savadkoohi A, et al. Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink [J]. Acta Mechanica, 2011, 221(1-2): 175-200.
[58] Ture Savadkoohi A, Lamarque C-H, Dimitrijevic Z. Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity [J]. Nonlinear Dynamics, 2012, 70(2): 1473-1483.
[59] Al-Shudeifat M A. Highly efficient nonlinear energy sink [J]. Nonlinear Dynamics, 2014, 76(4): 1905-1920.
[60] Al-Shudeifat M A. Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators [J]. Journal of Vibration and Control, 2015, 21(6): 1210-1219.
[61] Andersen D, Starosvetsky Y, Vakakis A, et al. Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping [J]. Nonlinear Dynamics, 2012, 67(1): 807-827.
[62] Quinn D D, Triplett A L, Vakakis A F, et al. Energy harvesting from impulsive loads using intentional essential nonlinearities [J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2011, 133(1).
[63] Bellizzi S, Chung K. Vibration reduction using a nonlinear attachment including an active damper with delay [C]. International Mechanical Engineering Congress & Exposition IMECE 2015, Houston, United States, November 13–19, 2015, doi: 10.1115/IMECE2015-50967.
[64] Starosvetsky Y, Gendelman O V. Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping [J]. Journal of Sound and Vibration, 2009, 324(3–5): 916-939.
[65] Gendelman O V, Sigalov G, Manevitch L I, et al. Dynamics of an eccentric rotational nonlinear energy sink [J]. Journal of Applied Mechanics, 2011, 79(1).
[66] Sigalov G, Gendelman O V, Al-Shudeifat M A, et al. Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink [J]. Nonlinear Dynamics, 2012, 69(4): 1693-1704.
[67] Benarous N, Gendelman O V. Nonlinear energy sink with combined nonlinearities: Enhanced mitigation of vibrations and amplitude locking phenomenon [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(1): 21-33.
[68] Gendelman O V. Analytic treatment of a system with a vibro-impact nonlinear energy sink [J]. Journal of Sound and Vibration, 2012, 331(21): 4599-4608.
[69] Gourc E, Michon G, Seguy S, et al. Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink: Analytical and experimental developments [J]. Journal of Vibration and Acoustics, 2015, 137(3).
[70] Li T, Seguy S, Berlioz A. Optimization mechanism of targeted energy transfer with vibro-impact energy sink under periodic and transient excitation [J]. Nonlinear Dynamics, 2017, 87(4): 2415-2433.
[71] Lee Y S, Nucera F, Vakakis A F, et al. Periodic orbits, damped transitions and targeted energy transfers in oscillators with vibro-impact attachments [J]. Physica D: Nonlinear Phenomena, 2009, 238(18): 1868-1896.
[72] Al-Shudeifat M A, Wierschem N, Quinn D D, et al. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation [J]. International Journal of Non-Linear Mechanics, 2013, 52: 96-109.
[73] Lu Z, Chen X, Zhang D, et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation [J]. Earthquake Engineering and Structural Dynamics, 2016, 46(5): 697-714.
[74] Lu Z, Wang D, Masri S F, et al. An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers [J]. Smart Structures and Systems, 2016, 18(1): 93-115.
[75] 鲁正, 吕西林, 闫维明. 颗粒阻尼技术研究综述 [J]. 振动与冲击, 2013, 32(07): 1-7.
LU Zheng, Lu Xilin, YAN Weiming. A survey of particle damping technology [J]. Journal of Vibration and Shock, 2013, 32(07): 1-7.
[76] Al-Shudeifat M A. Asymmetric magnet-based nonlinear energy sink [J]. Journal of Computational and Nonlinear Dynamics, 2014, 10(1).
[77] Luo J, Wierschem N E, Fahnestock L A, et al. Realization of a strongly nonlinear vibration-mitigation device using elastomeric bumpers [J]. Journal of Engineering Mechanics, 2014, 140(5).
[78] Wang J, Wierschem N, Spencer Jr B F, et al. Experimental study of track nonlinear energy sinks for dynamic response reduction [J]. Engineering Structures, 2015, 94: 9-15.
[79] Lu X, Liu Z, Lu Z. Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation [J]. Structural Control and Health Monitoring, 2017: doi: 10.1002/stc.2033.
[80] 刘海平, 杨建中, 罗文波, 等. 新型欧拉屈曲梁非线性动力吸振器的实现及抑振特性研究 [J]. 振动与冲击, 2016, 35(11): 155-160+228.
LIU Haiping, YANG Jianzhong, LUO Wenbo, et al. Realization and vibration suppression ability of a new novel Euler buckled beam nonlinear vibration absorber [J]. Journal of Vibration and Shock, 2016, 35(11): 155-160+228.
[81] 刘海平, 王耀兵, 史文华. 非线性能量阱对飞轮扰振特性的抑制 [J]. 宇航学报, 2017, 38(05): 490-496.
LIU Haiping, WANG Yaobing, SHI Wenhua. Vibration suppression for a flywheel based on nonlinear energy sink [J]. Journal of Astronautics, 2017, 38(05): 490-496.
[82] Quinn D D, Hubbard S, Wierschem N, et al. Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2012, 226(2): 122-146.
[83] Sapsis T P, Dane Quinn D, Vakakis A F, et al. Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments [J]. Journal of Vibration and Acoustics, 2012, 134(1).
[84] Gendelman O V, Sapsis T, Vakakis A F, et al. Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators [J]. Journal of Sound and Vibration, 2011, 330(1): 1-8.
[85] Gourdon E, Lamarque C H. Energy pumping for a larger span of energy [J]. Journal of Sound and Vibration, 2005, 285(3): 711-720.
[86] Lee Y S, Vakakis A F, Bergman L A, et al. Enhancing the robustness of aeroelastic instability suppression using multi-degree-of-freedom nonlinear energy sinks [J]. AIAA Journal, 2008, 46(6): 1371-1394.
[87] Taghipour J, Dardel M. Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink [J]. Mechanical Systems and Signal Processing, 2015, 62–63: 164-182.
[88] Tsakirtzis S, Kerschen G, Panagopoulos P N, et al. Multi-frequency nonlinear energy transfer from linear oscillators to mdof essentially nonlinear attachments [J]. Journal of Sound and Vibration, 2005, 285(1–2): 483-490.
[89] Wierschem N E, Luo J, Al-Shudeifat M, et al. Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink [J]. Journal of Structural Engineering, 2014, 140(6).
[90] Ture savadkoohi A, Vaurigaud B, Lamarque C-H, et al. Targeted energy transfer with parallel nonlinear energy sinks, Part II: Theory and experiments [J]. Nonlinear Dynamics, 2012, 67(1): 37-46.
[91] Vaurigaud B, Ture Savadkoohi A, Lamarque C H. Targeted energy transfer with parallel nonlinear energy sinks. Part I: Design theory and numerical results [J]. Nonlinear Dynamics, 2011, 66(4): 763-780.
[92] Zhang Y-W, Zhang Z, Chen L-Q, et al. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks [J]. Nonlinear Dynamics, 2015, 82(1): 61-71.
[93] Mcfarland D M, Bergman L A, Vakakis A F. Experimental study of non-linear energy pumping occurring at a single fast frequency [J]. International Journal of Non-Linear Mechanics, 2005, 40(6): 891-899.
[94] 刘中坡, 乌建中, 王菁菁, 等. 轨道型非线性能量阱对高层结构脉动风振的控制仿真 [J]. 振动工程学报, 2016, 29(06): 1088-1096.
LIU Zhongpo, WU Jianzhong, WANG Jingjing, et al. Simulation of track nonlinear energy sink for wind-induced vibration control in high-rise building [J]. Journal of Vibration Engineering, 2016, 29(06): 1088-1096.
[95] 孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制 [J]. 航空学报, 2012, 33(06): 1020-1029.
KONG Xianren, ZHANG Yechi. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(06): 1020-1029.
[96] 张也弛, 孔宪仁, 杨正贤, 等. 非线性吸振器的靶能量传递及参数设计 [J]. 振动工程学报, 2011, 24(02): 111-117.
ZHANG Yechi, KONG Xianren, YANG Zhengxian, et al. Targeted energy transfer and parameter design of a nonlinear vibration absorber [J]. Journal of Vibration Engineering, 2011, 24(02): 111-117.
[97] Vaurigaud B, Manevitch L I, Lamarque C H. Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer [J]. Journal of Sound and Vibration, 2011, 330(11): 2580-2595.
[98] Goyal S, Whalen T M. Design and application of a nonlinear energy sink to mitigate vibrations of an air spring supported slab [C]. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, United States, September 24–28, 2005: 2331-2339.
[99] Kani M, Khadem S E, Pashaei M H, et al. Vibration control of a nonlinear beam with a nonlinear energy sink [J]. Nonlinear Dynamics, 2016, 83(1): 1-22.
[100] Dai H L, Abdelkefi A, Wang L. Vortex-induced vibrations mitigation through a nonlinear energy sink [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 42: 22-36.
[101] Cochelin B, Herzog P, Mattei P O. Experimental evidence of energy pumping in acoustics [J]. Comptes Rendus - Mecanique, 2006, 334(11): 639-644.
[102] Bellet R, Cochelin B, Herzog P, et al. Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber [J]. Journal of Sound and Vibration, 2010, 329(14): 2768-2791.
[103] Nucera F, Vakakis A F, Mcfarland D M, et al. Targeted energy transfers in vibro-impact oscillators for seismic mitigation [J]. Nonlinear Dynamics, 2007, 50(3): 651-677.
[104] Wierschem N E, Hubbard S A, Luo J, et al. Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers [J]. Journal of Sound and Vibration, 2017, 389: 52-72.
[105] Nucera F, Lo Iacono F, Mcfarland D M, et al. Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results [J]. Journal of Sound and Vibration, 2008, 313(1–2): 57-76.
[106] Nucera F, Mcfarland D M, Bergman L A, et al. Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Computational results [J]. Journal of Sound and Vibration, 2010, 329(15): 2973-2994.
[107] Elliott C L, Mays G C, Smith P D. The protection of buildings against terrorism and disorder [J]. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 1992, 94(3): 287-297.
[108] Luo J, Wierschem N E, Hubbard S A, et al. Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation [J]. Engineering Structures, 2014, 77: 34-48.
[109] Luo J, Wierschem N E, Fahnestock L A, et al. Design, simulation, and large-scale testing of an innovative vibration mitigation device employing essentially nonlinear elastomeric springs [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(12): 1829-1851.
[110] 刘中坡, 吕西林, 鲁正, 等. 轨道型非线性能量阱振动控制的振动台试验研究 [J]. 建筑结构学报, 2016, 37(11): 1-9.
LIU Zhongpo, LU Xilin, LU Zheng, et al. Experimental investigation on vibration control effect of track nonlinear energy sink [J]. Journal of Building Structures, 2016, 37(11): 1-9.
[111] 王菁菁, 浩文明, 吕西林. 轨道非线性能量阱阻尼对其减振性能的影响 [J]. 振动与冲击, 2017, 36(24): 30-34+50.
WANG Jingjing, HAO Wenming, LU Xilin. Influence of track nonlinear energy sink damping on its vibration reduction performance [J]. Journal of Vibration and Shock, 2017, 36(24): 30-34+50.
[112] Younesian D, Nankali A, Motieyan M E. Application of the nonlinear energy sink systems in vibration suppression of railway bridges [C]. Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, July 12-14, 2010: 227-231.
[113] 张也弛. 非线性能量阱的力学特性与振动抑制效果研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012.
ZHANG Yechi. Research on the dynamics and performance of vibration suppression of nonlinear energy sink [D]. Harbin: Harbin Institute of Technology, 2012.
[114] 张也弛. 基于非线性能量阱的双共振峰振动抑制的力学特性研究 [J]. 航天器环境工程, 2015, 32(05): 477-483.
ZHANG Yechi. Dynamics of a nonlinear energy sink used for suppressing two-separated resonance peaks [J]. Spacecraft Environment Engineering, 2015, 32(05): 477-483.
[115] Lee Y S, Vakakis A F, Bergman L A, et al. Triggering mechanisms of limit cycle oscillations in a two degree-of-freedom wing flutter model [C]. ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, United States, September 24–28, 2005: 1863-1872.
[116] Lee Y S, Vakakis A F, Bergman L A, et al. Suppression of limit cycle oscillations in the van der Pol oscillator by means of passive non-linear energy sinks [J]. Structural Control and Health Monitoring, 2006, 13(1): 41-75.
[117] Lee Y S, Kerschen G, Mcfarland D M, et al. Suppressing aeroelastic instability using broadband passive targeted energy transfers, Part 2: Experiments [J]. AIAA Journal, 2007, 45(10): 2391-2400.
[118] Lee Y, Vakakis A, Bergman L, et al. Suppressing aeroelastic instability using broadband passive targeted energy transfers, Part 1: Theory [J]. AIAA Journal, 2007, 45(3): 693-711.
[119] 张文帆, 张家忠, 曹盛力. NES对二维机翼气弹不稳定性的抑制作用 [J]. 航空学报, 2016, 37(11): 3249-3262.
ZHANG Wenfan, ZHANG Jiazhong, CAO Shengli. Suppression of aeroelastic instability of 2-D wing by nonlinear energy sinks [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3249-3262.
[120] 陈恒, 王扬渝, 金江明. 带控制截面机翼结构基于非线性能量阱的颤振抑制 [J]. 动力学与控制学报, 2017, 15(05): 459-466.
CHEN Heng, WANG Yangyu, JIN Jiangming. Flutter suppression for a rigid airfoil with a control surface based on nonlinear energy sink [J]. Journal of Dynamics and Control, 2017, 15(05): 459-466.
[121] Zhang Y-W, Yuan B, Fang B, et al. Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink [J]. Nonlinear Dynamics, 2016, 87(2): 1159-1167.
[122] Zhang Y-W, Zhang H, Hou S, et al. Vibration suppression of composite laminated plate with nonlinear energy sink [J]. Acta Astronautica, 2016, 123: 109-115.
[123] 孙斌, 吴志强. 基于非线性能量阱的双频激励非线性系统减振 [J]. 应用数学和力学, 2017, 38(11): 1240-1250.
SUN Bin, WU Zhiqiang. Vibration suppression of nonlinear systems under dual-frequency excitations with nonlinear energy sink [J]. Applied Mathematics and Mechanics, 2017, 38(11): 1240-1250.
[124] Bergeot B, Bellizzi S, Cochelin B. Analysis of steady-state response regimes of a helicopter ground resonance model including a non-linear energy sink attachment [J]. International Journal of Non-Linear Mechanics, 2016, 78: 72-89.
[125] Bergeot B, Bellizzi S, Cochelin B. Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades [J]. Journal of Sound and Vibration, 2017, 392: 41-55.
[126] 郑玲, 李以农, Baz A. 汽车主动悬架非线性能量吸收控制器 [C]. 第九届全国振动理论及应用学术会议暨中国振动工程学会成立20周年庆祝大会, 中国浙江杭州, 2007: 9.
ZHENG Ling, LI Yinong, AMR.Baz. Active control of vehicle suspension using nonlinear energy sink [C]. The 9th national conference on vibration theory and application, Hangzhou, Zhejiang, China, 2007: 9.
[127] Anubi O M, Crane C. A new semiactive variable stiffness suspension system using combined skyhook and nonlinear energy sink-based controllers [J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 937-947.
[128] Hanna N H, Tobias S A. A theory of nonlinear regenerative chatter [J]. Journal of Engineering for Industry, 1974, 96(1): 247-255.
[129] Tobias S A, Fishwick W. Theory of regenerative machine tool chatter [J]. The Engineer, 1958, 205(7): 199–203.
[130] Nankali A, Surampalli H, Lee Y S, et al. Suppression of machine tool chatter using nonlinear energy sink [C]. Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Washington, DC, USA, August 28-31, 2011: 1215-1223.
[131] Gourc E, Seguy S, Michon G, et al. Chatter control in turning process with a nonlinear energy sink [J]. Advanced Materials Research, 2013, 698: 89-98.
[132] Gourc E, Seguy S, Michon G, et al. Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink [J]. Journal of Sound and Vibration, 2015, 355: 392-406.
[133] Jalan A K, Mohanty A R. Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady-state condition [J]. Journal of Sound and Vibration, 2009, 327(3–5): 604-622.
[134] Bab S, Khadem S E, Shahgholi M, et al. Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks [J]. Mechanical Systems and Signal Processing, 2017, 84: 128-157.
[135] Mihajlović N, Van Veggel A A, Van De Wouw N, et al. Analysis of friction-induced limit cycling in an experimental drill-string system [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004, 126(4): 709-720.
[136] Mihajlovic N, Van De Wouw N, Hendriks M P M, et al. Friction-induced limit cycling in flexible rotor systems: An experimental drill-string set-up [J]. Nonlinear Dynamics, 2006, 46(3): 273-291.
[137] Viguie R, Kerschen G, Golinval J C, et al. Using passive nonlinear targeted energy transfer to stabilize drill-string systems [J]. Mechanical Systems and Signal Processing, 2009, 23(1): 148-169.
[138] Ahmadabadi Z N, Khadem S. Self-excited oscillations attenuation of drill-string system using nonlinear energy sink [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(2): 230-245.
[139] Yang T-Z, Yang X-D, Li Y, et al. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity [J]. Journal of Vibration and Control, 2014, 20(9): 1293-1300.
[140] Mamaghani A E, Khadem S E, Bab S. Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink [J]. Nonlinear Dynamics, 2016, 86(3): 1761-1795.
[141] Roundy S J. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion [D]. Berkeley, USA: University of California, 2003.
[142] Nili Ahmadabadi Z, Khadem S E. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device [J]. Journal of Sound and Vibration, 2014, 333(19): 4444-4457.
[143] Ouled Chtiba M, Choura S, Nayfeh A H, et al. Vibration confinement and energy harvesting in flexible structures using collocated absorbers and piezoelectric devices [J]. Journal of Sound and Vibration, 2010, 329(3): 261-276.
[144] Zhang Y, Tang L, Liu K. Piezoelectric energy harvesting with a nonlinear energy sink [J]. Journal of Intelligent Material Systems and Structures, 2017, 28(3): 307-322.
[145] Fang Z-W, Zhang Y-W, Li X, et al. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester [J]. Journal of Sound and Vibration, 2017, 391: 35-49.
[146] Remick K, Dane Quinn D, Michael Mcfarland D, et al. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity [J]. Journal of Sound and Vibration, 2016, 370: 259-279.
[147] Mann B P, Sims N D. Energy harvesting from the nonlinear oscillations of magnetic levitation [J]. Journal of Sound and Vibration, 2009, 319(1–2): 515-530.
[148] Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Transient responses [J]. Journal of Sound and Vibration, 2014, 333(20): 4859-4880.
[149] Dutoit N E, Wardle B L. Experimental verification of models for microfabricated piezoelectric vibration energy harvesters [J]. AIAA Journal, 2007, 45(5): 1126-1137.
[150] Quinn D D, Triplett A L, Bergman L A, et al. Comparing linear and essentially nonlinear vibration-based energy harvesting [J]. Journal of Vibration and Acoustics, 2010, 133(1).
[151] Yang K, Zhang Y-W, Ding H, et al. The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 44: 184-192.
[152] Yang K, Zhang Y-W, Ding H, et al. Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction [J]. Journal of Vibration and Acoustics, 2017, 139(2).
[153] Guo H, Liu B, Yu Y, et al. Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink [J]. Archive of Applied Mechanics, 2017, 87(6): 1007-1018.
[154] Boroson E R, Missoum S. Optimization Under Uncertainty of Parallel Nonlinear Energy Sinks [C]. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, United States, January 4-8, 2016.
[155] Boroson E, Missoum S. Stochastic optimization of nonlinear energy sinks [J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 633-646.
[156] 张也弛, 孔宪仁, 张红亮. 非线性耦合振子间的靶能量传递研究:保守系统中的完全能量传递 [J]. 振动与冲击, 2012, 31(01): 150-155.
ZHANG Yechi, KONG Xianren, ZHANG Hongliang. Targeted energy transfer among coupled nonlinear oscillators: complete energy exchange in a conservative system [J]. Journal of Vibration and Shock, 2012, 31(01): 150-155.
[157] 张也弛, 孔宪仁. 非线性耦合振子间产生靶能量传递的初始条件 [J]. 哈尔滨工业大学学报, 2012, 44(07): 21-26.
ZHANG Yechi, KONG Xianren. Initial conditions for targeted energy transfer in coupled nonlinear oscillators [J]. Journal of Harbin Institute of Technology, 2012, 44(07): 21-26.
[158] Habib G, Romeo F. The tuned bistable nonlinear energy sink [J]. Nonlinear Dynamics, 2017, 89(1): 179-196.
[159] Farid M, Gendelman O V. Tuned pendulum as nonlinear energy sink for broad energy range [J]. Journal of Vibration and Control, 2017, 23(3): 373-388.
[160] 熊怀, 孔宪仁, 刘源. 一类立方非线性吸振器的能量传递和耗散研究及参数设计 [J]. 振动工程学报, 2015, 28(05): 785-792.
XIONG Huai, KONG Xianren, LIU Yuan. Energy transfer and dissipation of a class of nonlinear absorber and its parameter design [J]. Journal of Vibration Engineering , 2015, 28(05): 785-792.
[161] 刘良坤, 谭平, 闫维明, 等. 一种NES与TMD的混合控制方案研究 [J]. 工程力学, 2017, 34(09): 64-72+82.
LIU Liangkun, TAN Ping, YAN Weiming, et al. Analysis of a hybrid scheme comprised of nonlinear energy sink and tuned mass damper [J]. Engineering Mechanics, 2017, 34(09): 64-72+82.
[162] 王菁菁, 刘志彬, 浩文明, 等. 线性-非线性联合质量阻尼器减震性能分析 [J]. 结构工程师, 2018, 34(S1): 67-75.
WANG Jingjing, LIU Zhibin, HAO Wenming, et al. Seismic Response Control with Nonlinear-linear Single-mass Damper [J]. Structural Engineers, 2018, 34(S1): 67-75.
[163] Zhang W, Liu Y, Cao S, et al. Targeted energy transfer between 2-D wing and nonlinear energy sinks and their dynamic behaviors [J]. Nonlinear Dynamics, 2017, 90(3): 1841-1850.
[164] 陆泽琦, 陈立群. 非线性被动隔振的若干进展 [J]. 力学学报, 2017, 49(03): 550-564.
LU Zeqi, CHEN Liqun. Some recent progresses in nonlinear passive isolations of vibrations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(03): 550-564.
[165] 杨海旭, 马伟文, 蔡永明, 等. 具有NES的复合摩擦摆隔震性能有限元分析 [J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(09): 1031-1036.
YANG Haixu, MA Weiwen, CAI Yongming, et al. Finite element analysis of the isolation performance of complex friction pendulum system based on NES [J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(09): 1031-1036.

PDF(2572 KB)

Accesses

Citation

Detail

段落导航
相关文章

/