基于舵机动态特性测试的阵风减缓控制系统设计

杨阳,杨超,吴志刚

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 106-112.

PDF(1848 KB)
PDF(1848 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 106-112.
论文

基于舵机动态特性测试的阵风减缓控制系统设计

  • 杨阳,杨超,吴志刚
作者信息 +

A design of gust alleviation control system based on test of actuator’s dynamic characteristics

  • YANG Yang,YANG Chao,WU Zhigang
Author information +
文章历史 +

摘要

利用所设计的舵机测试系统对飞翼布局阵风减缓试验模型所采用的伺服舵机(Hitec-7954SH)带载情况下的动态特性进行测试,并根据试验数据辨识出舵机的传递函数。设计舵机补偿控制系统补偿舵机的幅值衰减和相位滞后,并在此基础上设计阵风减缓控制系统。仿真计算表明:在von Karman连续阵风激励的情况下,所设计的控制系统能有效减缓模型的阵风响应。然而,舵机动态特性会对阵风减缓控制系统产生影响:幅值衰减会降低阵风减缓控制系统的减缓效果而相位滞后会使得所设计的阵风减缓控制系统在某些频率范围内加剧飞机的阵风响应。比较舵机补偿控制系统开/闭状态下模型的阵风响应,在断开舵机补偿控制系统的情况下,所设计的阵风减缓控制系统的减缓效果降低,

Abstract

The dynamic characteristics of servo actuator (Hitec-7954SH) being mounted in the flying-wing model for a gust alleviation test was tested with loads using a designed actuator testing system.The transfer function of the actuator was identified.The compensation control system was designed to compensate the amplitude attenuation and phase delay of the actuator.On this foundation, the gust alleviation control system was designed.The simulation showed that the responses of the flying-wing model in von Karman gust were effectively alleviated by the control system, but the gust alleviation control system was influenced by the actuator's dynamic characteristics, the gust alleviation effect of the designed control system was reduced because of the actuator's amplitude attenuation and the designed control system could aggravate the gust response at some frequencies because of the actuator's phase delay.The gust alleviation effect of the designed control system would be reduced without the compensation control system, and some responses would even be increased.Therefore, the actuator compensation control system for this actuator was very necessary.

关键词

气动伺服弹性 / 舵机 / 动态特性 / 阵风响应 / 阵风减缓主动控制

Key words

aeroservoelasticity / actuator / dynamic characteristics / gust response / gust alleviation active control

引用本文

导出引用
杨阳,杨超,吴志刚. 基于舵机动态特性测试的阵风减缓控制系统设计[J]. 振动与冲击, 2020, 39(4): 106-112
YANG Yang,YANG Chao,WU Zhigang. A design of gust alleviation control system based on test of actuator’s dynamic characteristics[J]. Journal of Vibration and Shock, 2020, 39(4): 106-112

参考文献

[1] 杨俊斌,吴志刚,戴玉婷,等. 飞翼布局飞机阵风减缓主动控制风洞试验[J]. 北京航空航天大学学报,2017,43(1):184-192.
YANG Jun-bin, WU Zhi-gang, DAI Yu-ting, et al. Wind tunnel test of gust alleviation active control for flying wing configuration aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1):182-192.
[2] 金长江,肖业伦. 大气扰动中的飞行原理[M]. 北京:国防工业出版社,1992.
JIN Chang-jiang, XIAO Ye-lun. Flight principle in atmosphere turbulence [M]. Beijing: National Defence Industry Press, 1992.
[3] SU W H, CENIK C E.S. Dynamic response of highly flexible flying wing [J]. AIAA Journal, 2011, 49(2):324-339.
[4] RAGHAVAN B, PATIL M J. Flight control for flexible, high-aspect-ratio flying wings [J]. Journal of Guidance, Control and Dynamics, 2010, 33(1):64-74.
[5] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the Helios Prototype Aircraft Mishap [R]. HQ 04-283, Hampton, VA: NASA Langley Research Center, 2004.
[6] WU Z G, CHEN L, YANG, et al. Gust response modeling and alleviation scheme design for an elastic aircraft [J]. Science China Technological Sciences, 2010, 53(11): 3110-3118.
[7] Liu X, Sun Q, Cooper J E. LQG based model predictive control for gust load alleviation [J]. Aerospace Science and Technology, 2017, 71(2017): 499-509.
[8] Yagil L, Raveh D E, Idan M. Deformation control of highly flexible aircraft in trimmed flight and gust encounter [J]. Journal of Aircraft. 2018, 55(2): 829-840.
[9] Zhao Y H, Yue C Y, Hu H Y. Gust load alleviation on a large transport airplane [J]. Journal of Aircraft, 2016, 53(6): 1932-1946.
[10] Dai Y T, Yang C, Wang C L. Strategy for robust gust response alleviation of an aircraft mode [J]. Control Engineering Practice. 2017, 60(2017): 211-217.
[11] Livne E. Alternative approximations for integrated control/structure aeroservoelastic synthesis [J]. AIAA Journal, 1993, 31(6): 1100-1108.
[12] CESNIK C E S, SENATORE P J, Su W H, et al. X-HALE: A very flexible unmmaned aerial vechicle for nonlinear aeroelastic tests [J]. AIAA Journal, 2012, 50(12): 2820-2833.
[13] Kim S H, Tahk M J. Dynamic stiffness transfer function of an electromechanical actuator using system identification [J]. International Journal of Aeronautical & Space Sciences, 2018, 19(2018): 208-216.
[14] 赵志俊,孟祥喆,郑浩. 舵机带宽测试系统设计与试验方法研究[J]. 电子测量技术,2019,42(1):63-67.
Zhao Zhi-jun, Meng Xiang-zhe, Zheng Hao. Research on design and test method of actuator bandwidth testing system [J]. Electronic Measurement Technology, 2019, 42(1): 63-67.
[15] 张少应,陈明哲. 数字化舵机频率特性测试方法与实现[J]. 测控技术,2017,36(7):30-37.
Zhang Shao-ying, Chen Ming-zhe. Method and implementation of frequency characteristic test for digital servo [J]. Measurement & Control Technology, 2017, 36(7): 30-37.
[16] 朱盟,曹国武,张志伟,等. 基于Levy法的气动舵机系统辨识[J]. 弹箭与制导学报,2011,31(6):69-72.
ZHU Meng, CAO Guo-wu, ZHANG Zhi-wei, et al. The system identification of pneumatic actuator based on Levy method [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(6): 69-72.
[17] 章家保,刘慧,贾宏光,等. 电动舵机伺服系统的模型辨识及校正[J]. 光学精密工程,2008,16(10):1971-1976.
ZHANG Jia-bao, LIU Hui, JIA Hong-guang, et al. Model identification and corrector design for servo system of electromechanical actuator [J]. Optics and Precision Engineering, 2008, 16(10): 1971-1976.
[18] 朱纪洪,和阳,黄志毅. 舵机特征模型及其故障检测方法[J]. 航空学报,2015,36(2):640-650.
ZHU Ji-hong, HE Yang, HUANG Zhi-yi. Characteristic modal-based approach for actuator fault diagnosis [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 640-650.
[19] 黄超. 柔性飞翼飞机颤振主动抑制系统建模、设计与验证[D]. 北京:北京航空航天大学,2018.
HUANG Chao. Modeling, Design, and Verification of Active Flutter Suppression System Acting on Flexible Flying-Wing Aircraft [D]. Beijing: Beihang University, 2018.
[20] Karpel M. Procedures and models for aeroservoelastic analysis and design [J]. Journal of Applied Mathematics and Mechanics, 2001, 81(9): 579-592.
[21] 梁春燕,谢剑英. 大纯滞后系统的自适应补偿控制[J]. 控制理论与应用,2001,18(4):176-180.
LIANG Chun-yan, XIE Jian-ying. The adaptive control with compensation for long time-delay system [J]. Control Theory and Application, 2001, 18(4): 176-180.
[22] 黄伟,李芹,王志萍. 增益和相位补偿的双模Smith预估控制算法[J]. 上海电力学院学报,2011,27(6):603-607.
HUANG Wei, LI Qin, WANG Zhi-ping. Research on dual-model Smith predictive control with gain and phrase compensation [J]. Journal of Shanghai University of Electric Power, 2011, 27(6): 603-607.
[23] Mehta U, Kaya İ. Smith predictor with sliding mode control for process with large dead times [J]. Journal of Electrical Engineering, 2017, 68(6): 463-469.
[24] Sakr A, El-Nagar A M, El-Bardini M, et al. Improving the performance of networked control systems with time delay and data dropouts based on fuzzy model predictive control [J]. 2018, 355(2018): 7201-7225.
[25] Schmidt D K. Modern Flight Dynamics [M]. New York: McGraw-Hill, 2012.
[26] 毕莹. 大展弦比飞机阵风减缓设计与试验研究[D]. 北京:北京航空航天大学,2017.
BI Ying. Control law and wind tunnel test about gust alleviation of high-aspect-ratio aircraft [D]. Beijing: Beihang University, 2017.

PDF(1848 KB)

1311

Accesses

0

Citation

Detail

段落导航
相关文章

/