#br# 基于均匀变形和混合智能算法的框架结构抗震优化设计

何浩祥,王文涛,吴山

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 113-121.

PDF(1734 KB)
PDF(1734 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 113-121.
论文

#br# 基于均匀变形和混合智能算法的框架结构抗震优化设计

  • 何浩祥,王文涛,吴山
作者信息 +

Aseismic optimization design of a frame structure based on uniform deformation and a hybrid intelligent algorithm

  • HE Haoxiang,WANG Wentao,WU Shan
Author information +
文章历史 +

摘要

结构在地震作用下发生均匀损伤或均匀变形可以避免出现薄弱层和集中损伤,且结构整体抗震性能可得到全面提升。以此为目标对结构进行抗震优化设计具有重要的理论和工程意义,但相关的理论和规律性研究尚不够系统深入。针对目前结构优化算法计算效率较低的不足,提出基于差分进化算法和粒子群算法的混合智能算法,并给出结构优化计算流程。针对弯剪型框架结构,以弹性动力时程分析中结构各层的层间相对位移相等为优化目标,基于混合智能算法对结构楼层刚度进行优化设计,获得了楼层刚度的最优分布规律。在此基础上研究了地震动随机性和梁柱刚度比等因素对优化结果和刚度分布规律的影响。基于曲线拟合和等效理论分析,建立楼层最优刚度比和等效最优截面尺寸比的多项式函数。通过与现有研究成果的对比,验证所建立的经验函数具有较高的精度,可为面向均匀变形的结构优化设计提供准确有效的参考依据并可提高计算效率。

Abstract

If the structural story drifts are equal when a frame is subjected to earthquake, the occurrence of weak story and concentrated damage can be avoided, and the overall seismic performance can be improved in an all-round way.It has great theoretical and engineering significance to optimize the seismic design according to above object, but the relevant theoretical and regular research is not intensive.In view of the shortcomings of the low efficiency of present structural optimization algorithms, a hybrid intelligent algorithm based on differential evolution algorithm and particle swarm optimization algorithm was proposed, and the structural optimization calculation process was given.For a bend-shear frame structure, the optimization objective is to ensure equal interlayer displacement, the story stiffness was optimal designed based on the hybrid intelligent algorithm, and the optimal distribution of floor stiffness was obtained.On this basis, the influence of the randomness of ground motion and the stiffness ratio of beam and column to the optimization results and the distribution of stiffness was studied.The polynomial function of the optimal stiffness ratio of the floor and the ratio of the equivalent optimum cross section size was established.By comparing with the existing research results, it is verified that the established empirical function has high accuracy, and an accurate and effective reference basis for the optimization design for uniform deformation is provided and the calculation efficiency is improved.

关键词

结构优化 / 最优刚度分布 / 均匀损伤 / 弯剪型结构 / 智能算法

Key words

structural optimization / optimal stiffness distribution / uniform damage / bend-shear structure / intelligent algorithm

引用本文

导出引用
何浩祥,王文涛,吴山. #br# 基于均匀变形和混合智能算法的框架结构抗震优化设计[J]. 振动与冲击, 2020, 39(4): 113-121
HE Haoxiang,WANG Wentao,WU Shan. Aseismic optimization design of a frame structure based on uniform deformation and a hybrid intelligent algorithm[J]. Journal of Vibration and Shock, 2020, 39(4): 113-121

参考文献

[1] Spunt L. Optimum structural design[M]. Virginia: Prentice-Hall, 1971.
[2] 程耿东. 工程结构优化设计基础[M]. 大连: 大连理工大学出版社, 2012.
Cheng Gengdong. Introduction to optimum design of engineering structures [M]. Dalian: Dalian University of Technology Press, 2012. (in Chinese)
[3] 郭鹏飞, 韩英仕, 魏英姿. 离散变量结构优化的拟满应力设计方法[J]. 工程力学, 2000, 17(1): 94-98.
GuoPengfei, Han Yingshi, Wei Yingzi. Quasi full stress design method for structural optimization with discrete variables [J]. Engineering Mechanics, 2000, 17(1):94-98. (in Chinese)
[4] 孙爱伏, 侯爽, 欧进萍. 高层钢结构基于均匀损伤设计的整体抗震能力提高方法[J]. 地震工程与工程振动, 2012, 32(2) : 74-81.
Sun Aifu, HouShuang, Ou Jinping. A method for increasing the integral seismic capacity of tall steelbuildings based onuniform-damage seismic design[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(2): 74-81.(in Chinese)
[5] Zou X K, Chan C M, Li G. Multiobjective optimization for performance-baseddesign of reinforcedconcrete frames [J]. Journal of Structural Engineering, 2007, 133(10): 1462-1474.
[6] Hisatoku T, Kobori T, Minai R, Lnoue Y. On the optimum aseismic design data of tall building structures based on the elasto-plastic earthquake responses [J]. Journalof Earthquake Engineering,1969, 12(18): 1623-1628.
[7] KatoB, NakamuraY, AnrakuH. Optimum earthquake design of shear buildings [J]. Journal of the Engineering Mechanics Division, 1972, 98(4): 701-712.
[8] 王光远, 董明耀, 郭骅. 剪切型多层框架抗震设计的最优刚度分布[J]. 地震工程与工程振动, 1980,1(1):92-105.
Wang Guangyuan, Dong Mingyao, Guo Hua. The optimal stiffness distribution of seismic design for multi-story shear frame[J]. Earthquake engineering and Engineering Vibration, 1980,1(1):92-105.(in Chinese)
[9] 秋山宏.エネルギ-の钓合に基づく建筑物の耐震设计[M]. 日本: 技报堂出版,1999.
Akiyama H. Seismic design of building structures based on energy balance [M]. Japan, Technology news publishing,1999. (in Japan)
[10] 王星星, 裴星洙, 王维. 多高层钢结构最佳侧移刚度分布与最佳截面惯性矩分布研究[J]. 工程抗震与加固改造, 2011, 33(1):19-27.
Wang Xingxing, Pei Xingzhu, Wang Wei. Study on optimum lateral stiffness ratio and optimum moment of inertia ratio for multi-story steel structure [J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(1):19-27.(in Chinese)
[11] 裴星洙, 王星星, 王维. 基于抗震的多高层钢结构层间侧移刚度优化分布的研究[J].江苏科技大学学报, 2011, 25(4):119-125.
Pei Xingzhu, Wang Xingxing, Wang Wei. Optimal distribution of story lateral stiffness of multi-storey steel structure based on anti-seismic [J]. Journal of Jiangsu University of Science and Technology, 2011, 25(4):119-125.(in Chinese)
[12] Chan C M, Zou X K. Elastic and inelastic drift performance optimization for reinforced concrete building under earthquake loads [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(8): 929-950.
[13] ParkK, MedinaR A. Conceptual Seismic Design of Regular Frames Based on the Concept of Uniform Damage [J]. Journal of Structural Engineering, 2007, 133(7): 945-955.
[14] HajirasoulihaI, Asadi P, Pilakoutas K. An efficient performance-based seismic design method for reinforced concrete frames [J]. Earthquake Engineering and Structural Dynamics, 2012, 41(4): 663-679.
[15] 白久林, 杨乐, 欧进萍. 基于等损伤的钢框架结构抗震性能优化[J]. 工程力学, 2015, 32(6):76-83.
Bai Jiulin, Yang Le, Ou Jinping. Aseismic performance optimization of steel frame structures based on uniform damageconcept[J]. Engineering Mechanics,2015,32(6):76-83. (in Chinese)
[16] Wang W, Zou C, Chen Y, Zhang Y, Chen Y. Seismic design of multistory tension-only concentrically braced beamthrough frames aimed at uniform inter-story drift [J]. Journal of Constructional Steel Research,2016,122(3):326-338.
[17] 徐龙河, 于绍静, 卢啸. 基于损伤控制函数与失效概率的结构抗震性能多目标优化与评估[J]. 工程力学, 2017, 34(10):61-67.
Xu Longhe, Yu Shaojing, Lu Xiao. Damage control function and failure probability basedstructural seismic performance multi-objectiveoptimization and assessment [J]. Engineering Mechanics, 2017, 34(10): 61-67. (in Chinese)
[18] Lee C, Ahn J. Flexural Design of Reinforced Concrete Frames by Genetic Algorithm [J]. Journal of Structural Engineering, 2003, 129(6):762-774.
[19] Camp C V, Pezeshk S, Hansson H K. Flexural Design of Reinforced Concrete Frames Using a Genetic Algorithm [J]. Journal of Structural Engineering, 2003, 129 (6):105-115.
[20] Park H S, Chang W S. Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Computers & Structures, 2002, 80(14-15):1305-1316.
[21] 包世华, 张桐生. 高层建筑结构设计和计算[M]. 北京:清华大学出版社, 2005.
Bao Shihua, Zhang Tongsheng. Design and calculation of tall building structures [M]. Beijing: Tsinghua University Press, 2005. (in Chinese)
[22] 李志强, 郑山锁, 陶清林. 基于失效模式的SRC框架-RC核心筒混合结构三水准抗震优化设计[J]. 振动与冲击, 2013, 32(19):44-50.
Li Zhiqiang,Zheng Shansuo,Tao Qinglin. Failure modes-based three-level aseismic optimal design for a SRC frame-RC core wall hybrid structure [J]. Journal of vibration and shock, 2013, 32(19):44-50. (in Chinese)
[23] Kennedy J, Eberhart R C. Swarm Intelligence [M]. USA: Academic Press, 2001.
[24] Storn R, Price K. Differential evolution-A simple and efficient adaptive scheme for global over continuous spaces [R]. Berkeley: University of California, 2006.

PDF(1734 KB)

325

Accesses

0

Citation

Detail

段落导航
相关文章

/