圆形孔洞结构岩体冲击响应识别实验模拟研究

谭卓英,武斌,夏志远,丁宇,齐宽,李文,岳鹏君

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 136-141.

PDF(953 KB)
PDF(953 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 136-141.
论文

圆形孔洞结构岩体冲击响应识别实验模拟研究

  • 谭卓英,武斌,夏志远,丁宇,齐宽,李文,岳鹏君
作者信息 +

Experimental simulation of impact response identification on circular hole cavern rock mass

  • TAN Zhuoying,WU Bin,XIA Zhiyuan,DING Yu,QI Kuan,LI Wen,YUE Pengjun
Author information +
文章历史 +

摘要

孔洞是地质和岩石工程中常见的结构,为了模拟孔洞结构岩体在高速冲击荷载下的响应特征,设计和加工了孔洞结构的花岗岩体试样,采用改进的冲击动力学测试模拟系统,在不同冲击能下,在垂直和平行孔洞轴线方向对孔洞结构花岗岩体进行渐进式循环冲击模拟试验,对实验杆入/反射应力波进行测量。研究表明,峰值反射应力比与冲击能大小无关,但反射应变比能比随冲击能的增大而降低;在低冲击能下,孔洞结构对反射应力波的响应影响不大;随着冲击能的增大,其影响增大;岩体沿孔洞结构的轴线方向发生开裂破坏,与冲击位置无关;在试样开裂后,应变比能显著增高但峰值应力比的变化不大,说明应变比能比可作为岩体结构破坏指示的响应指标。模拟实验为孔洞类岩石结构的钻进识别以及防护设计提供了理论依据。

Abstract

Cavities are a usual structure in natural geology and rock engineering.In order to simulate the response characteristics of rock mass with an opening circular hole structure under high speed impact loading, granite samples with tunnel-like structure were designed and processed.An improved impact dynamics simulation test system was employed to measure the stress wave in experimental bar for the structural rock samples at the different positions parallel and perpendicular to the axis of the cavity under progressive cycle impact loads.The results show that peak reflected stress ratio is independent of the impact energy; however, specific reflected strain energy decreases with the impact energy.The void structure has little effect on the response of reflected stress wave under low impact energy.With the increase of impact energy, the influence of the void structure on the response increases.The ratio of specific strain energy but not the peak stress ratio significantly increases after the rock samples were spalled.The impact failure of rock occurs along the axis of the tunnel-like structure and is independent of the loading points.It indicates specific strain energy ratio may be proposed to be the response indicator of rock cavity structure failure, which provides the theoretical basis for identification of a cavern structure as well as its protection while drilling.

关键词

花岗岩 / 洞室结构 / 冲击能 / 应变比能 / 响应识别

Key words

granite / cavern structure / impact energy / specific strain energy / response identification

引用本文

导出引用
谭卓英,武斌,夏志远,丁宇,齐宽,李文,岳鹏君. 圆形孔洞结构岩体冲击响应识别实验模拟研究[J]. 振动与冲击, 2020, 39(4): 136-141
TAN Zhuoying,WU Bin,XIA Zhiyuan,DING Yu,QI Kuan,LI Wen,YUE Pengjun. Experimental simulation of impact response identification on circular hole cavern rock mass[J]. Journal of Vibration and Shock, 2020, 39(4): 136-141

参考文献

[1] 谭卓英 著. 岩土工程界面识别理论与方法[M], 北京: 科学出版社, 2008.
TAN Zhuoying. Theory and Method on Identification of Geotechnical Engineering Interfaces[M]. Beijing: Science Press, 2008.
[2]  谭卓英, 李文, 岳鹏君, 等. 基于钻进参数的岩土地层结构识别技术与方法[J]. 岩土工程学报, 2015, 37(7): 1328-1333.
TAN Zhuoying, LI Wen, YUE Peng-jun, et al. Techniques and approaches for identification of geo-formation structure based on diamond drilling parameters[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1328-1333.
[3]  Steven S, Raymond L. Automated coal seam detection using a modulated specific energy measure in a monitor-while-drilling context[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 75: 196-209.
[4]  Laura C, Estanislao P, Enric V, et al. Modeling of the EPB TBM shield tunneling advance as a tool for geological characterization[J]. Tunnelling and Underground Space Technology, 2016, 56: 12-21.
[5]  Yamamoto T, Shirasagi, S, Yamamoto S, Mito Y, Aoki K. Evaluation of the geological condition ahead of the tunnel face by geostatical techniques using TBM driving data. Tunn. Undergr. Space Technol. 2003, 18, 213–221.
[6]  Pujades E, Vázquez – Suñé E, Culí L, Carrera J, Ledesma A, Jurado A. Hydrogeological impact assessment by tunnelling in sites of high sensitivity[J]. Engineering Geology,2015, 193, 421–434.
[7]  陈荣, 卢芳云, 林玉亮, 等. 分离式Hopkinson压杆实验技术研究进展[J]. 力学进展, 2009, (5): 2009, 39(5): 576-587. Sept. 2009
Chen Rong, LU Fangyun, LIN Yuliang, et al. A critical review of split Hopkinson pressure bar teachniques[J]. Advances in Mechanics, 2009, 39(5): 576-587.
[8]  徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.
XU Xiaohe, YU Jing. Rock Fragmentation Theory[M]. Beijing: Coal Industry Press Coal Industry Press, China, 1984.
[9]  李夕兵, 古德生. 岩石冲击动力学[M].长沙: 中南工业大学出版社, 1994.
LI Xibing, GU Desheng. Rock Impact Dynamics[M]. Changsha: Central South University of Technology Press, China, 1994.
[10] 葛涛, 王明洋, 侯晓峰. 冲击荷载作用下岩石破坏机理预测[J]. 岩土力学, 2006, 27(S): 1075-1078.
GE Tao, WANG Mingyang, HOU Xiaofeng. Prediction for failure mechanism of rock under impact loading[J]. Rock and Soil Mechanics, 2006, 27(S): 1075-1078.
[11] 戚承志, 钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报, 2003, 22(2): 177-181.
QI Chengzhi, QIAN Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 177-181.
[12] 李海波, 赵坚, 李廷芥. 滑移型裂纹模型在研究岩石动态单轴抗压强度中的应用[J]. 岩石力学与工程学报, 2001, 20(2): 315-319.
LI Haibo, ZHAO Jian, LI Tingjie. Study of dynamic uniaxial compressive strength of rock material using sliding crack model[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(2): 315-319.
[13] 高文学, 杨军, 黄风雷. 强冲击载荷下岩石本构关系研究[J]. 北京理工大学学报, 2000,20(2): 165-120.
GAO Wenxue, YANG Jun, HUANG Fenglei. The constitutive relation of rock under strong impact loading[J]. Journal of Beijing Institute of Technology, 2000, 20(2): 165-120.
[14] 信礼田, 何 翔, 苏 敏. 强冲击载荷下岩石的力学性质[J]. 岩土工程学报, 1996, 18(6): 61-68.
XIN Litian, HE Xiang, SU Min. The Mechanical Properties of Rocks under Strong Impact Loading[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 61-68.
[15] YANG Jun, GAO Wenxue, JIN Qian-kun. Experimental Study on Damage Properties of Rocks Under Dynamic Loading[J]. Journal of Beijing Institute of Technology, 2000, 9(3): 243-248.
[16] 郑朝阳, 段东, 方朝合. 岩石孔洞及微观结构对声波传播规律的影响研究[J]. 煤炭科学技术, 2014, 42(S): 70-72.
ZHENG Chaoyang, DUAN Dong, FANG Chao-he. Study on Holes and Microstructure of Rock Influenced to Acoustic Wave Transmission Law[J]. Coal Science and Technology, 2014, 42(S): 70-72.
[17] Vardhan H, Adhikari G R, Govindaraj M . Estimating rock properties using sound levels produced during drilling[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, (46): 604-612.
[18] Kumar B R, Vardhan H, Govindaraj M. Sound level produced during rock drilling vis-à-vis rock properties[J]. Engineering Geology, 2011, (123): 333-337.
[19] Kumar B R, Vardhan H, Govindaraj M. Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling[J] Rock Mechanics and Rock Engineering, 2011, (44): 613-620.
[20] Kumar B R, Vardhan H, Govindaraj M, et al. Regression analysis and ANN models to predict rock properties from sound levels produced during drilling[J] International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 61-72.
[21] MASOOD. Estimation of sound level produced during drilling of igneous rock samples using a portable drill set-up[C]. Procedia Earth and Planetary Science, 2015, (11): 469-482.
[22] LI Wen, TAN Zhuoying. Research on Rock Strength Prediction Based on Least Squares Support Vector Machine[J], Geotechnical and Geological Engineering, 2017, 35(1): 385-393.
[23 ]闫东明, 刘康华, 李贺东, 等. 带初始损伤混凝土的动态抗压性能研究[J]. 水利学报, 2015, 2015-06-29. 网络出版地址:http://www.cnki.net/kcms/detail/11.1882.TV.20150629.1318.004.html
YAN Dongming, LIU Kanghua, LI Hedong. A study on the dynamic compressive behavior of pre-damaged concrete[J]. Journal of Hydraulic Engineering, 2015-06-29. http://www.cnki.net/kcms/detail/11.1882.TV.20150629.1318.004.html.
[24] Bhatti A Q. Falling-weight impact response for prototype RC type rock-shed with sand cushion[J]. Materials and Structures, 2015, 48(10): 3367-3375.
[25] 章根德. 岩石对冲击载荷的动态响应[J]. 爆炸与冲击, 1982, (4): 1-9.
ZHANG Gende. Dynamic response of rock to impulse loads[J]. Explosion and Shock Waves, 1982, (4): 1-9.
[26]  朱晶晶,李夕兵,宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究[J]. 岩土工程学报, 2013, 35(3): 531-539.
ZHU Jingjing, LI Xibing, GONG Fengqiang, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531-539.
[27  ]Kahraman S. Evaluation of simple methods for assessing the uniaxial compressive strength of rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 981-994. October 2001
[28]  Al-Harthi A A. A field index to determine the strength characteristics of crushed aggregate[J]. Bulletin of Engineering Geology and the Environment, 2001, 60(3): 193-200.
[29] Fener M, Kahraman S, Bilgil A, Gunaydin O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks[J]. Rock Mechanics and Rock Engineering, 2005, 38(4): 329-343. September 2005
[30] Kahraman S, Bilgin N, Feridunoglu C. Dominant rock properties affecting the penetration rate of percussive drills[J]. International Journal of Rock Mechanics and Mining Sciences,2003, 40(5): 711-723. July 2003
[31] 梁利喜, 周龙涛, 刘向君, 等. 孔洞结构对超声波衰减特性的影响研究[J]. 岩石力学与工程学报, 2015, 34(S1):3208-3214.
LIANG Lixi,ZHOU Longtao,LIU Xiangjun, et al. Study of effect of pore structure on ultrasonic attenuation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1):3208-3214.
[32] 李世民, 李晓军, 徐宝. 地下工程抗爆的孔洞群防护技术[J]. 爆破, 2014, 31(3): 149-153.
LI Shimin, LI Xiaojun, XU Bao. Cavity-group Protection Technique for of Underground Engineering Explosion-resistance[J]. Blasting, 2014, 31(3): 149-153.
[33] 黄玉锋, 舒大强, 陈维炎. 爆破震动作用下地下洞室支护结构的动态响应分析[J]. 爆破, 2006, 23(1): 14-18.
HUANG Yufeng, SHU Daqiang, CHEN Weiyan. Effect of Blasting Vibration on the Support Structure of an Underground Chamber[J]. Blasting, 2006, 23(1): 14-18.
 

PDF(953 KB)

437

Accesses

0

Citation

Detail

段落导航
相关文章

/