脊骨线对于非线性系统的判断、描述和参数识别,具有重要的意义;而现有的脊骨线提取方法大多理论上较为复杂,且有局部线性化误差较大、数据波动剧烈等问题,限制了工程应用。提出一种新的非线性系统脊骨线提取方法,该方法利用非线性系统自由振动响应的一次谐波分量,计算谐波信号峰值点的瞬时频率,可以方便地提取脊骨线;这种新的非线性系统脊骨线提取方法理论明确、简单,计算方便,易于工程应用。通过三个数值算例说明了该方法的有效性,同时将此方法应用于非线性描述,并综合讨论了非线性描述的几何方法;并基于此方法进行了非线性系统参数识别,取得了良好的效果。
Abstract
Backbone curves are of great significance for nonlinear identification including detection, characterization, and parameters identification.However, existing methods to extract backbone curves are of complex theories, and there are some problems, such as linearization errors and data fluctuation.A first-order component is main part of harmonic signal, it is convenient to extract backbone curve from instantaneous frequencies of peak points based on the first-order component of free vibration response signal.The proposed method is with simple conception and easy computation, it is suitable to be applied in practice.Three numerical simulations were utilized to verify its effectiveness.Meanwhile, several geometric methods for nonlinear characterization were discussed.Finally, parameter identification of a nonlinear system based on the proposed method was conducted, and good identification results were achieved by comparing with existing method.
关键词
脊骨线 /
非线性识别 /
非线性描述 /
参数识别
{{custom_keyword}} /
Key words
backbone curve /
nonlinear identification /
nonlinear characterization /
parameter identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Kerschen G, Worden K, Vakakis A F, et al. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing, 2006, 20 (3): 505-592.
[2] Worden K, Tomlinson G R. Nonlinearity in Structural Dynamics: Detection, Identification and Modelling[M]. London: Institute of Physics Publishing, 2001. 41-80.
[3] Noël J P, Kerschen G. Nonlinear system identification in structural dynamics: 10 more years of progress[J]. Mechanical Systems and Signal Processing, 2017, 83: 2-35.
[4] Rosenberg R M. The normal modes of nonlinear n-degree-of-freedom systems[J]. Journal of Applied Mechanics, 1962, 29(1): 7-14.
[5] Shaw S W, Pierre C. Non-linear normal modes and invariant manifolds [J]. Journal of Sound and Vibration, 1991, 150(1): 170–173.
[6] 吴志强, 陈予恕, 毕勤胜. 非线性模态的分类和新的求解方法[J]. 力学学报, 1996, 28(3): 298-307.
Wu Zhiqiang, Chen Yushu, Bi Qinsheng. Classification of nonlinear normal modes and their new constructive method[J]. Acta Mechanica Sinica, 1996, 28(3): 298-307.
[7] Kerschen G, Peeters M, Golinval J C, et al. Nonlinear normal modes, Part I: A useful framework for the structural dynamicis[J]. Mechanical Systems and Signal Processing, 2009, 23(1): 170-194.
[8] Londoño J M, Cooper J E, Neild S A. Identification of systems containing nonlinear stiffnesses using backbone curves[J]. Mechanical Systems and Signal Processing, 2017, 84: 116-135.
[9] Londoño J M, Neild S A, Cooper J E. Identification of backbone curves of nonlinear systems from resonance decay responses[J]. Journal of Sound and Vibration, 2015, 348: 224-238.
[10] Feldman M. Non-linear system vibration analysis using Hilbert Transform I: Free vibration analysis method Freevib[J]. Mechanical Systems and Signal Processing, 1994, 8(2): 119-127.
[11] 王立岩, 李东升, 李宏男. 基于HHT的非线性振动系统参数识别研究[J]. 工程力学, 2017, 34(1): 40-44+56.
Wang Liyan, Li Dongsheng, Li Hongnan. Parameter identification of nonlinear vibration systems based on the Hilbert-Huang transform[J]. Engineering Mechanics, 2017, 34(1): 40-44+56.
[12] Carrella A, Ewins D J. Identifying and quantifying structural nonlinearities in engineering applications from measured frequency response functions[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 1011-1027.
[13] 李庆扬, 王能超, 易大义. 第5版. 数值分析[M]. 北京: 清华大学出版社, 2008. 39-40.
Li Qingyang, Wang Nengchao, Yi Dayi. 5th edition. Numerical Analysis[M]. Beijing: Tsinghua University Press, 2008:39-40.
[14] Renson L, Gonzalez-Buelga A, Barton D A W, et al. Robust identification of backbone curves using control-based continuation[J]. Journal of Sound and Vibration, 2016, 367: 145-158.
[15] Peter S, Riethmüller R, Leine R I. Tracking of backbone curves of nonlinear systems using Phase-Locked-Loops [C]//Kerschen G. Nonlinear Dynamics, Volume 1, Conference Proceedings of the Society for Experimental Mechanics Series. New York: Springer, 2016. 107-120.
[16] 王兴. 局部非线性结构的动力学计算与试验辨识研究[D]. 北京: 清华大学, 2016. 42-43.
Wang Xing. Calculation and identification of structures with localized nonlinearities[D]. Beijing: Tsinghua University, 2016. 107-120.
[17] Wang Z C, Ren W X, Chen G D. Time-varying linear and nonlinear structural identification with analytical mode decomposition and hilbert transform[J]. Journal of Structural Engineering-ASCE, 2013, 139: 06013001.
[18] 王佐才, 任伟新, 邢云斐. 基于解析模态分解的时变与弱非线性结构密集模态参数识别[J]. 振动与冲击, 2014, 33(19): 1-7+16.
Wang Zuocai, Ren Weixin, Xing Yunfei. Analytical modal decomposition-based time-varying and weakly nonlinear structures' modal parametric identification with closely-spaced modes[J]. Journal of Shock and Vibration, 2014, 33(19): 1-7+16.
[19] Kovacic I, Brennan M J. The Duffing Equation: Nonlinear Oscillators and their Behaviour[M]. New Jersey: John Wiley & Sons, 2011. 25-53.
[20] Londoño J M, Cooper J E, Neild S A. Identification of systems containing nonlinear stiffnesses using backbone curves[J]. Mechanical Systems and Signal Processing, 2017, 84: 116-135.
[21] 萧寒. 多自由度非线性系统的霍普分岔与鞍结分岔控制[D]. 长沙: 湖南大学, 2008, 29-30.
Xiao Han. Hopf and saddle-node bifurcation control in multiple-degree-of-freedom nonlinear systems[D]. Changsha: Hunan University, 2008, 29-30.
[22] Al-Hadid M A, Wright J R. Developments in the force-state mapping technique for non-linear systems and the extension to the location of non-linear elements in a lumped-parameter system[J]. Mechanical Systems and Signal Processing, 1989, 3(3):269-290.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}