基于优化NRS和复杂网络的柴油发电机组故障诊断

吉哲1,傅忠谦2,张松涛1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 246-251.

PDF(1071 KB)
PDF(1071 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 246-251.
论文

基于优化NRS和复杂网络的柴油发电机组故障诊断

  • 吉哲1,傅忠谦2,张松涛1
作者信息 +

Fault diagnosis of diesel generator set based on optimized NRS and complex network

  • JI Zhe1, FU Zhongqian2, ZHANG Songtao1
Author information +
文章历史 +

摘要

为解决柴油发电机组故障诊断中复合故障难以识别的问题,设计了一种变分模态分解、优化邻域粗糙集和社团层次聚类相结合的故障诊断方法。采用变分模态分解方法对采集的声信号进行分解,并形成初始特征集。考虑到冗余特征的影响,使用优化邻域粗糙集进行特征筛选,达到属性简约的目的。利用复杂网络中的社团结构建立故障诊断网络,通过设计社团区分准则函数找出社团结构,同时实现了故障诊断分类。试验表明,所提方法的故障诊断率达到了99.17%,其有效性及优越性得到了充分证实。

Abstract

In order to solve the problem of complex fault identification in diesel generator set fault diagnosis, a fault diagnosis method combining variational modal decomposition, optimal neighborhood rough set and community hierarchical clustering was designed.The variational mode decomposition method was used to decompose the collected acoustic signals and form the initial feature set.Considering the influence of redundant features, an optimized neighborhood rough set was used to filter features to achieve the goal of attribute reduction.The fault diagnosis network was established by the community structure in the complex network, and the community structure was found by designing the association criterion function, and the fault diagnosis classification was realized at the same time.The experimental results show that the fault diagnosis rate of the proposed method reaches 99.17%, and its validity and superiority is fully confirmed.

关键词

柴油发电机组 / 声信号 / 邻域粗糙集 / 复杂网络 / 故障诊断

Key words

diesel generator set / acoustic signal / neighborhood rough set / complex network / fault diagnosis

引用本文

导出引用
吉哲1,傅忠谦2,张松涛1. 基于优化NRS和复杂网络的柴油发电机组故障诊断[J]. 振动与冲击, 2020, 39(4): 246-251
JI Zhe1, FU Zhongqian2, ZHANG Songtao1. Fault diagnosis of diesel generator set based on optimized NRS and complex network[J]. Journal of Vibration and Shock, 2020, 39(4): 246-251

参考文献

[1] 李晓博, 江志农, 张沛, 等. 基于IMS聚类算法的柴油发动机故障诊断方法研究[J]. 振动与冲击, 2018, 37(7) :193-198.
LI Xiaobo, JIANG Zhinong, ZHANG Pei,et al. Fault diagnosis approach for diesel engines based on IMS clustering algorithm[J]. Journal of Vibration and Shock, 2018, 37(7) :193-198.
[2] 周俊, 伍星, 迟毅, 等. 盲解卷积和频域压缩感知在轴承复合故障声学诊断的应用[J]. 机械工程学报, 2016, 52(3):63-70.
ZHOU Jun, Wu Xing, CHI Yi, et al. Blind Deconvolution and Frequency Domain Compressive Sensing Application in Bearing Composite Acoustic Fault Diagnosis[J]. Chinese Journal of Mechanical Engineering, 2016, 52(3):63-70.
[3] 舒畅, 金潇, 李自品, 等. 基于CEEMDAN的配电变压器放电故障噪声诊断方法[J]. 高电压技术, 2018(8) : 2603-2611.
SHU Chang, JIN Xiao, LI Zipin, et al. Noise Diagnosis Method of Distribution Transformer Discharge Fault Based on CEEMDAN[J]. High Voltage Engineering, 2018(8) : 2603-2611.
[4] 丁锋, 栗祥, 韩帅. EEMD与NRS在涡桨发动机转子故障诊断中的应用[J]. 航空动力学报, 2018(6) :1423-1431.
DING Feng, LI Xiang, HAN Shuai. Application of EEMD and NRS in turboprop engine rotor fault diagnosis[J]. Journal of Aerospace Power, 2018(6) :1423-1431.
[5] PENG M, WANG J, TSE C K, et al. Complex network application in fault diagnosis of analog circuits[J]. International Journal of Bifurcation and Chaos, 2011, 21(05): 1323-1330.
[6] ZHANG A P, REN G, JIA B Z. Fault diagnosis for marine engine system based on complex network cluster method[J]. Engineering Solutions for Manufacturing Processes, 2013, 655: 801-805.
[7] HU Q, YU D, LIU J, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information sciences, 2008, 178(18): 3577-3594.
[8] QU J, ZHANG Z, GONG T. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171: 837-853.
[9] 安若铭, 索明亮. 邻域粗糙集在属性约简及权重计算中的应用[J]. 计算机工程与应用, 2016, 52(7): 160-165.
AN Ruomin, SUO Mingliang. Application of attributes reduction and weights calculation through neighborhood rough set[J]. Computer Engineering and Applications, 2016, 52(7): 160-165.
[10] NEWMAN M E J. The structure and function of complex networks[J]. SIAM review, 2003, 45(2): 167-256.
[11] PORTER M A, ONNELA J P, MUCHA P J. Communities in Networks[J]. Notices of the American Mathematical Society, 2009, 56(9):4294–4303.
[12] 张爱萍, 任光, 林叶锦, 等. 基于复杂网络 Newman 快速算法的船舶柴油机故障诊断[J]. 内燃机工程, 2015, 36(2): 61-67.
ZHANG Aiping, REN Guang, LIN Yejin, et al. Fault Diagnosis for Marine Diesel Engine Based on Newman Fast Algorithm in Complex Network[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(2): 61-67.
[13] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical review E, 2004, 69(2): 026113.
[14] NEWMAN M, BARABASI A L, WATTS D J. The structure and dynamics of networks[M]. Princeton University Press, 2011.
[15] 杜海峰, 悦中山, 李树茁, 等. 基于模块性指标的动态网络社群结构探测方法[J]. 系统工程理论与实践, 2009, 29(3): 162-171.
DU Haifeng, YUE Zhongshan, LI Shuzhuo, et al. Community structure detecting algorithm for dynamic networks based on modularity[J]. System Engineering Theory and Practice, 2009, 29(3): 162-171.
[16] Dragomiretskiy K,Zosso D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing,2014, 62(3): 531-544.
[17] Li Yongbo,Xu Minqiang,Wang Rixin,et al. A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy [J]. Journal of Sound and Vibration,2016, 360:277-299.

PDF(1071 KB)

343

Accesses

0

Citation

Detail

段落导航
相关文章

/