基于小波包特征提取和模糊熵特征选择的柴油机故障分析

蒋佳炜1,胡以怀1,柯赟2,陈彦臻1

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 273-277.

PDF(1512 KB)
PDF(1512 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 273-277.
论文

基于小波包特征提取和模糊熵特征选择的柴油机故障分析

  • 蒋佳炜1,胡以怀1,柯赟2,陈彦臻1#br#
作者信息 +

Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection

  • JIANG Jiawei1, HU Yihuai1, KE Yun2, CHEN Yanzhen1
Author information +
文章历史 +

摘要

船舶动力设备因故障监测信号样本少、变化缓慢、数据特征呈非线性,使得设备故障模式的准确识别和状态预测比较难。尤其是柴油机振动信号的故障诊断,由于柴油机振动信号噪声多,诊断信号难以进行特征选择的问题,提出了基于小波包能量谱特征提取和模糊熵特征择的柴油机故障诊断方法。利用模糊熵对小波包能量谱提取出的特征集进行特征选择,将选择后的特征参数输入LS-SVM进行故障模式识别。试验结果表明,该方法可以提高故障识别准确率。在该试验中,故障识别准确率达到了99.36%,相比于未进行特征选择的特征集,识别准确率提高了0.72%。

Abstract

Ship power equipment makes fault pattern recognition and state prediction more difficult due to few samples, slow changes, and the nonlinear structure of data of fault monitoring signals.Especially for the diesel engine vibration signal fault diagnosis, due to the noise of the diesel engine vibration signal, the diagnosis signal is difficult in feature selection.This paper presents a diesel engine fault diagnosis method based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection.The feature set extracted from the wavelet packet energy spectrum is selected by fuzzy entropy, and the selected feature parameters are input to the LS-SVM for fault pattern recognition.Experimental results show that this method can improve the accuracy of fault recognition.In the experiment of this paper, the fault recognition accuracy rate reaches 99.36%.Compared with the feature set without feature selection, the recognition accuracy rate is increased by 0.72%.

关键词

小波包分析 / 模糊熵 / 特征选择 / 支持向量机 / 柴油机故障诊断 / 故障模式识别

Key words

wavelet packet analysis / fuzzy entropy / feature selection / support vector machine / diesel engine fault diagnosis / fault pattern recognition

引用本文

导出引用
蒋佳炜1,胡以怀1,柯赟2,陈彦臻1. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击, 2020, 39(4): 273-277
JIANG Jiawei1, HU Yihuai1, KE Yun2, CHEN Yanzhen1. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock, 2020, 39(4): 273-277

参考文献

[1] 胡以怀,杨叔子,刘永长.柴油机气阀间隙异常振动诊断方法的改进[J].上海海运学院学报,1997(04):29-36.
Hu Yihuai,Yang Shuzi,Liu Yongchang.Improvement of Diagnostic Method for Abnormal Vibration of Gas Valve Valve in Diesel Engine[J].Journal of Shanghai Maritime University,1997(04):29-36.
[2] 夏勇,张振仁,商斌梁,郭明芳,张毅.基于图像处理与神经网络的内燃机故障诊断研究[J].内燃机学报,2001(04):356-360.
Xia Yong, Zhang Zhenren, Shang Binliang, Guo Mingfang, Zhang Yi. Research on Fault Diagnosis of Internal Combustion Engine Based on Image Processing and Neural Network[J]. Journal of Internal Combustion Engine, 2001(04): 356-360.
[3] 李智,陈祥初,刘政波.基于图像与神经网络的柴油机气门故障诊断方法研究[J].内燃机学报,2001(03):241-244.
Li Zhi, Chen Xiangchu, Liu Zhengbo. Research on Diesel Engine Valve Fault Diagnosis Based on Image and Neural Network[J]. Journal of Internal Combustion Engine, 2001(03):241-244.
[4] 郑海波,李志远,陈心昭,贾继德.基于时频分布的发动机异响特征分析及故障诊断研究[J].内燃机学报,2002(03):267-272.
ZHENG Haibo, LI Zhiyuan, CHEN Xinzhao, JIA Jide.Analysis of Engine Abnormal Characteristics and Fault Diagnosis Based on Time-Frequency Distribution[J].Journal of Internal Combustion Engine,2002(03):267-272.
[5] Z M Geng, J Chen, J B Hull. Analysis of engine vibration and design of an applicable diagnosing approach. International Journal of Mechanical Sciences, 2003, 45(8): 1391–1410.
[6] Z Geng, J Chen. Investigation into piston-slap-induced vibration for engine condition simulation and monitoring. Journal of Sound and Vibration, 2005, 282(3–5): 735–751.
[7] 王家宏,张仕海.基于时间序列与小波分析的船舶柴油机故障诊断[J].船舶工程,2009,31(03):15-17.
Wang Jiahong,Zhang Shihai.Fault Diagnosis of Marine Diesel Engine Based on Time Series and Wavelet Analysis[J].Ship Engineering,2009,31(03):15-17.
[8] 石明江,罗仁泽,付元华.小波和能量特征提取的旋转机械故障诊断方法[J].电子测量与仪器学报,2015,29(08):1114-1120.
Shi Mingjiang,Luo Renze,Fu Yuanhua.A Fault Diagnosis Method for Rotating Machinery Based on Wavelet and Energy Feature Extraction[J].Journal of Electronic Measurement and Instrument,2015,29(08):1114-1120.
[9] 甘醇,吴建华,杨仕友.基于小波包能量分析的开关磁阻电机功率变换器故障诊断[J].中国电机工程学报,2014,34(09):1415-1422.
Gan Chun,WU Jian-hua,YANG Shi-you.Fault diagnosis of power converter for switched reluctance motor based on wavelet packet energy analysis[J].Proceedings of the CSEE,2014,34(09):1415-1422.
[10] 史丽萍,王攀攀,胡泳军,韩丽.基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J].电工技术学报,2014,29(01):147-155.
Shi Liping,Wang Panpan,Hu Yongjun,Han Li.Fault diagnosis of motor rotor broken bars based on backbone particle swarm optimization algorithm and support vector machine[J].Transactions of China Electrotechnical Society,2014,29(01):147-155.
[11] JING, Ya-Bing, et al. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM. Chinese Journal of Mechanical Engineering, 2017, 30.4: 991-1007.
[12] 姜媛媛,王友仁..基于小波包能量谱和ELM的光伏逆变器多故障在线诊断[J].仪器仪表学报,2015,36(09):2145-2152.
Jiang Yuanyuan,Wang Youren.On-line diagnosis of multi-faults of photovoltaic inverter based on wavelet packet energy spectrum and ELM[J].Chinese Journal of Scientific Instrument,2015,36(09):2145-2152.
[13] Bandemer, H., & Nather, W. (1992). Fuzzy data analysis. Kluwer Academic Publisher.
[14] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 379–423, 623–659.
[15] De Luca, A., & Termini, S. (1971). A definition of non-probabilistic entropy in setting of fuzzy set theory. Information Control, 20, 301–312.
[16] INGRID Daubechies.Ten Lectures on Wavelets[M].Philadelphia: Society for Industrial and Applied Mathematics,1992.
[17] 邹剑,陈进,耿遵敏.小波包算法在柴油机振声征兆提纯中的应用[J].上海交通大学学报,2002(02):217-221.
Zou Jian,Chen Jin,Zhai Zunmin.Application of Wavelet Packet Algorithm in the Demonstration of Vibration Signal of Diesel Engine[J].Journal of Shanghai Jiaotong University,2002(02):217-221.
[18] 石明江,罗仁泽,付元华.小波和能量特征提取的旋转机械故障诊断方法[J].电子测量与仪器学报,2015,29(08):1114-1120.
Shi Mingjiang,Luo Renze,Fu Yuanhua.A Fault Diagnosis Method for Rotating Machinery Based on Wavelet and Energy Feature Extraction[J].Journal of Electronic Measurement and Instrument,2015,29(08):1114-1120.

PDF(1512 KB)

454

Accesses

0

Citation

Detail

段落导航
相关文章

/