基于非傅里叶热传导对热冲击下带裂纹厚壁圆筒的分析

张彦博1,陈爱军1,2

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 278-283.

PDF(992 KB)
PDF(992 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 278-283.
论文

基于非傅里叶热传导对热冲击下带裂纹厚壁圆筒的分析

  • 张彦博1,陈爱军1,2
作者信息 +

Numerical analysis for non-Fourier thermodynamic response of a thick-walled hollow cylinder with cracks under thermal shock

  • ZHANG Yanbo1, CHEN Aijun1,2
Author information +
文章历史 +

摘要

随着科学技术、工业水平的发展,传统的傅里叶导热在极端条件下不再适用。基于双曲型单相延迟非傅里叶热传导方程,推导了热冲击下有限元方程,编写了有限元算法程序,研究了在热冲击载荷下含裂纹厚壁圆筒结构的热力学响应,计算出厚壁圆筒在非经典传热条件下的温度场、位移场和裂纹尖端应力强度因子的数值解,分析不同热冲击载荷、不同裂纹长度、不同相位延迟下非傅里叶热传导的波动性效应以及温度应力强度因子的变化,得到相应的结论。为非经典工程条件下,带裂纹厚壁圆筒构件的可靠性以及构件的优化设计提供了数值上的参考。

Abstract

With the development of technology and industry, traditional Fourier heat conduction is no longer applicable under extreme conditions.Based on the hyperbolic single-phase delay non-Fourier heat conduction equations, finite element method equations under thermal shock were derived.The finite element method algorithm was programmed to study the thermodynamic response of the thick-walled cylindrical structure with crack under thermal shock.The numerical solution of temperature field, displacement field, and the stress intensity factor of crack tip under non-classical heat transfer conditions were calculated.The volatility effects of non-Fourier heat conduction, and the variation of temperature stress intensity factors under different thermal shock, different crack lengths and different phase delays were analyzed.For the non-classical engineering conditions, the reliability of the thick-walled cylindrical members with cracks and the optimal design of the components provide a numerical reference.Under non-classical engineering conditions, a numerical reference for better reliability and design of the thick-walled cylindrical components was provided.

关键词

非傅里叶热传导 / 热冲击 / 厚壁圆筒 / 裂纹 / 温度应力强度因子 / 有限元分析

Key words

non-Fourier heat conduction / thermal shock / thick-walled cylinder / crack / thermal stress intensity factor / finite element analysis

引用本文

导出引用
张彦博1,陈爱军1,2. 基于非傅里叶热传导对热冲击下带裂纹厚壁圆筒的分析[J]. 振动与冲击, 2020, 39(4): 278-283
ZHANG Yanbo1, CHEN Aijun1,2. Numerical analysis for non-Fourier thermodynamic response of a thick-walled hollow cylinder with cracks under thermal shock[J]. Journal of Vibration and Shock, 2020, 39(4): 278-283

参考文献

[1]俞昌铭. 热传导及其数值分析[M]. 北京:清华大学出版社,1981
Yu Changming. Heat transfer and numerical analysis[M]. Beijing: Tsinghua University Press, 1981(in Chinese)
[2]彭亦鹏,陈爱军. 热冲击下带裂纹功能梯度厚壁圆筒的分析[J]. 振动与冲击,2017, 36(15), 64-70.
Peng Yipeng, Chen Aijun. Numerical simulation for a functionally graded thick-walled cylinder with cracks under thermal shock[J]. Journal of Vibration and Shock, 2017, 36(15), 64-70.
[3]Cattaneo C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation[J]. Compute Rendus 247, 1958, 431-433.
[4]Vernotte P. Les paradoxes de la theorie continue de I’equation de la chleur[J]. Compute Rendus 246, 1958, 3154-3155.
[5] Tzou D Y. The generalized lagging response in small-scale and high-rate heating[J]. International Journal Heat and Mass Transfer, 1995, 38(17):3231-3240.
[6] Tzou D Y. A unified field approach for conduction from macro to micro-scales[J]. Transactions of ASME-Journal of Heat Transfer, 1995, 117:8-16.
[7]李世荣,周凤玺,吴红梅. 薄板在周期热流作用下的热响应(I):温度响应[J]. 工程力学,2007,24(3):48-53
Lo Shirong, Zhou Fengxi, Wu Hongmei, Thermal Responses in a Thin Plate under Periodic Boundary Heat Flux(I): Temperature Field[J]. Engineering Mechanics, 2007, 24(3):48-53
[8]赵伟涛,吴九汇. 平板在任意周期表面热扰动作用下的非Fourier热传导的求解与分析[J]. 物理学报,2013,62(18),184401:1-9
Zhao Weitao, Wu Jiutui. Solution and analysis of non-Fourier heat conduction in a plane slab under arbitrary periodic surface thermal disturbance[J]. Acta Phys. Sin. 2013, 62(18),184401:1-9
[9]王晓燕,刘洪伟,李杰,邢庆坤. 基于非傅里叶的有限空圆柱体的温度场解析解及其在谐波均匀的圆柱体上的应用[J]. 数学的实践与认识,2017,47(19):105-110
Wang Xiaoyan, Liu Hongwei, Li Jie, Xing Qingkun. Analytical solution of non-Fourier temperature field of finite hollow cylinder and application of harmonic uniform cylinder[J]. Mathematics in Practice and Theory, 2017,47(19):105-110
[10]王海东,刘锦辉,过增元,高桥厚史. 金属纳米薄膜中稳态非傅里叶导热的实验[J]. 科学通报,2012,57(19):1794-1799
[11] L.M.Chen, J.W.Fu, L.F.Qian. On the non-Fourier thermal fracture of an edge-cracked cylindrical bar[J]. Theoretical and Applied Fracture Mechanics, 2015, 80:218-225
[12] Xue-Feng Liu, Dong-Mei Chang, Bao-Lin Wang, Lan-Rong Cai. Effect of temperature-dependency of material properties on thermal shock fracture of solids associated with non-Fourier heat conduction[J]. Theoretical and Applied Fracture Mechanics. 2018,93:195-201
[13] Han, S (Han, S.), Peddieson, J (Peddieson, J.). Non-Fourier heat conduction/convection in moving medium[J]. International Journal of Thermal Sciences. 2018, Aug, 130, 128-139
[14]张士元,郑百林,贺鹏飞. 热冲击条件下基于非傅里叶热传导的热涂层单边裂纹问题的力学分析[J]. 工程力学,2010, 27,47-51
Zhang Shiyuan, Zheng Bailin, He Pengfei. Mechanics analysis of an edge crack of thermal barrier coatings under thermal shock with non-fourier model[J]. Engineering Mechanics, 2010, 27,47-51
[15]Jiawei Fu, Zengtao Chen, Linfang Qian, Yadong Xu. Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack[J]. Engineering Fracture Mechanics, 2014, 128, 103-230
[16]L.M. Chen, J.W. Fu, L.F. Qian. On the non-Fourier thermal fracture of an edge-cracked cylindrical bar[J]. Theoretical and Applied Fracture Mechanics, 2015, 80, 218-225
[17]郭攀,武文华,赵军,李倩. 热冲击作用下层合皮肤组织热传导过程数值模拟[J]. 计算力学学报,2017, 34(6), 683-689
Guo Pan, Wu Wenhua, Zhao Jun, Li Qian. Numerical analysis for non-Fourier thermal behavior of biological multilayer skin tissue subjected to impulsive heat source[J] Chinese Journal of Computational Mechanics, 2017, 34(6), 683-689
[18]李法涛. 轴对称广义热弹问题研究[D] 南京理工大学,2008

PDF(992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/