基于卷积胶囊网络的滚动轴承故障诊断研究

杨平,苏燕辰,张振

振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 55-62.

PDF(1876 KB)
PDF(1876 KB)
振动与冲击 ›› 2020, Vol. 39 ›› Issue (4) : 55-62.
论文

基于卷积胶囊网络的滚动轴承故障诊断研究

  • 杨平,苏燕辰,张振
作者信息 +

A study on rolling bearing fault diagnosis based on convolution capsule network

  • YANG Ping,SU Yanchen,ZHANG Zhen
Author information +
文章历史 +

摘要

针对目前许多基于深度学习的滚动轴承故障诊断方法在检测含有噪声的信号以及载荷变化时,其诊断性能会有所下降的问题。提出一种基于卷积胶囊网络的故障诊断方法;该模型使用两个卷积层的卷积网络直接对原始的一维时域信号进行特征提取,并将其送入胶囊网络,输出每种故障类型的诊断结果;为了验证该模型的诊断性能,选用凯斯西储大学轴承数据库来进行验证,并与常见的卷积神经网络和深度神经网络进行对比。试验结果表明,相比于其它深度学习方法,该方法在载荷变化以及信号受到严重噪声污染时,依然拥有良好的诊断性能。

Abstract

Aiming at the phenomenon that the diagnostic performance of many rolling bearing fault diagnosis methods based on deep learning will be degraded when the noise-containing signal was detected and load variation, a fault diagnosis method based on convolution capsule network was proposed.The model uses a convolutional network with two layers of large convolution kernels to extract features from the original one-dimensional time domain signal and send it to the capsule network.The output of the model was the diagnostic results for each type of fault.In order to verify the diagnostic performance of the model, the Case Western Reserve University bearing database was selected for experiment, and compared the model with common convolutional neural network and deep neural network.The experimental results show that this method still has superior diagnostic performance in the test signals with serious noise and load variation compared with other deep learning methods.

关键词

卷积网络 / 胶囊网络 / 故障诊断 / 滚动轴承

Key words

convolution network / capsule network / fault diagnosis / rolling bearing

引用本文

导出引用
杨平,苏燕辰,张振. 基于卷积胶囊网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2020, 39(4): 55-62
YANG Ping,SU Yanchen,ZHANG Zhen. A study on rolling bearing fault diagnosis based on convolution capsule network[J]. Journal of Vibration and Shock, 2020, 39(4): 55-62

参考文献

[1] Li S, Liu G, Tang X, et al. An Ensemble Deep Convolutional Neural Network Model with Improved D-S Evidence Fusion for Bearing Fault Diagnosis[J]. Sensors, 2017, 17(8):1729-1750.
[2] Lu C, Wang Z Y, Qin W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130(C): 377-388.
[3] Mohanty S, Gupta K K, Raju K S, et al. Vibro acoustic signal analysis in fault finding of bearing using Empirical Mode Decomposition[C]. International Conference on Advanced Electronic Systems. IEEE, 2013: 29-33.
[4] 马风雷,陈小帅,周小龙.改进希尔伯特-黄变换的滚动轴承故障诊断[J].机械设计与制造,2018(05):75-78.
MA Feng-lei, CHEN Xiao-shuai, ZHOU Xiao-long. Rolling Bearing Fault Diagnosis Based on Improved Hilbert-Huang Transform[J]. Machinery Design & Manufacture, 2018 (05):75-78.
[5] Wang L N, Wang H B, Cai Y H, et al. Fault Diagnosis System of Rolling Bearing Based on Wavelet Analysis[J]. Applied Mechanics & Materials, 2012, 166-169(2): 951-955.
[6] Muralidharan V, Sugumaran V. A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis[J]. Applied Soft Computing Journal, 2012, 12(8): 2023-2029.
[7] Yang Y, Yu D, Cheng J. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM[J]. Measurement, 2007, 40(9): 943-950.
[8] 贺岩松,黄毅,徐中明,等.基于小波奇异熵与SOFM神经网络的电机轴承故障识别[J].振动与冲击, 2017,36(10):217-223.
HE Yansong, HUANG Yi, XU Zhongming, et al. Motor bearing fault identification based on the wavelet singular entropy and SOFM neural network[J]. Journal of Vibration and Shock, 2017,36(10):217-223.
[9] Example F. Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings[J]. Shock & Vibration, 2017, 2017: 1-17.
[10] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]. International Conference on Neural Information Processing Systems. Curran Associates Inc. 2012:1097-1105.
[11] Alikaniotis D, Yannakoudakis H, Rei M. Automatic Text Scoring Using Neural Networks [C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin:ACL,2016.
[12] Graves A, Mohamed A R, Hinton G. Speech Recognition with Deep Recurrent Neural Networks[C]// 2013 IEEE International Conference on Acoustics, Speech and Signal Processing . Vancouver: IEEE,2013.
[13] 曲建岭,余路,袁涛,等.基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J].仪器仪表学报, 2018,39(07):134-143.
Qu Jianling,Yu Lu,Yuan Tao , et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J].Chinese Journal of Scientific Instrument, 2018,39(07):134-143.
[14] Guo X, Chen L, Shen C. Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J]. Measurement, 2016, 93: 490-502.
[15] Gan M, Wang C, Zhu C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J]. Mechanical Systems & Signal Processing, 2016, s72–73(2): 92-104.
[16] 卫洁洁,杨喜旺,黄晋英,等.基于深度神经网络的滚动轴承故障诊断[J].组合机床与自动化加工技术,2017(11):88-91.
WEI Jie-jiea,YANG Xi-wanga,HUANG Jin-ying,et al. Rolling Bearing Fault Diagnosis Based on the Deep Neural Networks[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(11):88-91.
[17] Sun W, Shao S, Zhao R, et al. A sparse auto-encoder-based deep neural network approach for induction motor faults classification[J]. Measurement, 2016, 89(ISFA):171-178.
[18] 张西宁,向宙,唐春华.一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用[J].西安交通大学学报, 2018,52(07):1-8+59.
ZHANG Xining,XIAN GZhou,TANG Chunhua. A Deep Convolutional Auto-Encoding Network and Its Application in Fault Diagnosis[J]. Journal of Xi'an Jiaotong University, 2018,52(07):1-8+59.
[19] Wen L, Li X, Gao L, et al. A New Convolutional Neural Network Based Data-Driven Fault Diagnosis Method[J]. IEEE Transactions on Industrial Electronics, 2017, PP(99): 1-1.
[20] Zhang W, Zhang F, Chen W, et al. Fault State Recognition of Rolling Bearing Based Fully Convolutional Network[J]. Computing in Science & Engineering, 2018, PP(99): 1-1.
[21] 汤芳,刘义伦,龙慧.稀疏自编码深度神经网络及其在滚动轴承故障诊断中的应用[J].机械科学与技术, 2018,37(03):352-357.
Tang Fang,Liu Yilun,Long Hui. Application of Deep Neural Network with Sparse Auto-encoder in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018,37(03):352-357.
[22] Laha S K. Enhancement of fault diagnosis of rolling element bearing using maximum kurtosis fast nonlocal means denoising[J]. Measurement, 2017, 100: 157-163.
[23] Zhang W, Peng G, Li C, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals:[J]. Sensors, 2017, 17(2): 425-446.
[24] zhang W, Li C, Peng G, et al. A Deep Convolutional Neural Network with New Training Methods for Bearing Fault Diagnosis under Noisy Environment and Different Working Load [J]. Mechanical Systems and Signal Processing, 2017,100: 439-453.
[25] Sabour S, Frosst N, Hinton G E. Dynamic Routing Between Capsules[J].Advances in Neural Information Processing Systems ,2017: 3857–3867.
[26] Srivastava N, Hinton G,Krizhevsky, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15(1): 1929-1958.

PDF(1876 KB)

Accesses

Citation

Detail

段落导航
相关文章

/